Skip to main content
Log in

Atmospheric Mercury Fluxes in a Southern Boreal Forest and Wetland

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Total gaseous mercury (TGM) fluxes from the forest floor and a boreal wetland were measured by a flux chamber technique coupled with an automatic mercury vapour analyser. The fluxes were measured at three sampling sites in southern Finland, 61°14′ N, 25°04′ E in summer 2007, with additionally in situ TGM concentrations in the air at one of the sites and mercury bulk deposition at another. Most of the flux data were collected during the daytime. At one of the sites, diurnal flux behaviour was studied, and a clear cycle with an afternoon maximum and a night minimum was observed. The highest emissions (up to 3.5 ng m−2 h−1) were observed at the forest floor site having a moss and grass cover. At the wetland and litter-rich forest floor sites, the emissions were below 1 ng m−2 h−1 and sometimes negative (down to −1.0 ng m−2 h−1), indicating mercury uptake. The measured average fluxes in August were 0.9 ± 1.1 and 0.2 ± 0.3 ng m−2 h−1 for the forest floor sites and wetland sites, respectively. The flux data were compared with the mercury bulk deposition, which proved to be of the same magnitude, but opposite in sign. At the mossy forest floor site, the extrapolated TGM emissions were 130% of the Hg deposition in August 2007. Comparison with other studies showed that the fluxes in background areas are relatively uniform, regardless of measurement site location and method used. Airborne TGM remained at the background level during the study, with an average value of 1.3 ± 0.2 ng m−3; it frequently showed a diurnal cycle pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bahlmann E., Ebinghaus R., Ruck W. (2004a) Influence of solar radiation on mercury emission fluxes from soils. In 7th International Conference on Mercury as a Global Pollutant, June 27–July 2, 2004, Ljubljana, Slovenia. RMZ—materials and geoenvironment, 51 (pp 787–790).

  • Bahlmann E., Ebinghaus R., Ruck W. (2004b) The effect of soil moisture on the emission of mercury from soils. In 7th International Conference on Mercury as a Global Pollutant, June 27–July 2, 2004, Ljubljana, Slovenia. RMZ—materials and geoenvironment, 51 (pp 791–794).

  • Carpi, A., & Lindberg, S. E. (1998). Application of a Teflon dynamic flux chamber for quantifying soil mercury flux: Test and results over background soil. Atmospheric Environment, 32, 873–882.

    Article  CAS  Google Scholar 

  • Carpi, A., Frei, A., Cocris, D., McCloskey, R., Contreras, E., & Ferguson, K. (2007). Analytical artifacts produced by a polycarbonate chamber compared to a Teflon chamber for measuring surface mercury fluxes. Analytical and Bioanalytical Chemistry, 388, 361–365.

    Article  CAS  Google Scholar 

  • Ebinghaus, R., Jennings, S. G., Schroeder, W. H., Berg, T., Donaghy, T., Guentzel, J., et al. (1999). International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland. Atmospheric Environment, 33, 3063–3073.

    Article  CAS  Google Scholar 

  • Eckley, C., & Branfireun, B. (2008). Gaseous mercury emissions from urban surfaces: Controls and spatiotemporal trends. Applied Geochemistry, 23, 369–383.

    Article  CAS  Google Scholar 

  • Eckley, C. S., Gustin, M., Lin, C.-J., Li, X., & Miller, M. B. (2010). The influence of dynamic chamber design and operating parameters on calculated surface-to-air mercury fluxes. Atmospheric Environment, 44, 194–203.

    Article  CAS  Google Scholar 

  • Edwards, G. C., Rasmussen, P. E., Schroeder, W. H., Kemp, R. J., Dias, G. M., Fitzgerald-Hubble, C. R., et al. (2001). Sources of variability in mercury flux measurements. Journal of Geophysical Research, 106(D6), 5421–5435.

    Article  CAS  Google Scholar 

  • EMEP/CCC (2002) Manual for sampling and chemical analysis. Revised November 2001. Kjeller: Norwegian Institute for Air Research (EMEP/CCC-Report 1/95). http://www.nilu.no/projects/ccc/manual/index.html. Cited 28 Oct 2009.

  • Engle, M. A., Gustin, M. S., Lindberg, S. E., Gertler, A. W., & Ariya, P. A. (2005). The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates. Atmospheric Environment, 39, 7506–7517.

    Article  CAS  Google Scholar 

  • Finnish Forest Research Institute. (2007). Forest Finland in brief. Helsinki: Pekan Offset Oy. ISBN 978-951-40-2048-3.

    Google Scholar 

  • Fu, X., Feng, X., Zhu, W., Wang, S., & Lu, J. (2008). Total gaseous mercury concentrations in ambient air in the eastern slope of Mt. Gongga, South-Eastern fringe of the Tibetan plateau, China. Atmospheric Environment, 42, 970–979.

    Article  CAS  Google Scholar 

  • Gustin, M. S., Taylor, G. E., Jr., & Maxey, R. A. (1997). Effect of temperature and air movement on the flux of elemental mercury from substrate to the atmosphere. Journal of Geophysical Research, 102, 3891–3898.

    Article  CAS  Google Scholar 

  • Hellén, H., Hakola, H., Pystynen, K.-H., Rinne, J., & Haapanala, S. (2006). C2–C10 hydrocarbon emissions from a boreal wetland and forest floor. Biogeosciences, 3, 167–174.

    Article  Google Scholar 

  • Kellerhals, M., Beauchamp, S., Belzer, W., Blanchard, P., Froude, F., Harvey, B., et al. (2003). Temporal and spatial variability of total gaseous mercury in Canada: Results from the Canadian Atmospheric Mercury Measurement Network (CAMNet). Atmospheric Environment, 37, 1003–1011.

    Article  CAS  Google Scholar 

  • Kim, K.-H., Lindberg, S., & Meyers, T. (1995). Micrometeorological measurements of mercury vapor fluxes over background forest soils in Eastern Tennessee. Atmospheric Environment, 29, 267–282.

    Article  CAS  Google Scholar 

  • Kuiken, T., Zhang, H., Gustin, M., & Lindberg, S. (2008a). Mercury emission from terrestrial background surfaces in the eastern USA. Part I: Air/surface exchange of mercury within a southeastern deciduous forest (Tennessee) over one year. Applied Geochemistry, 23, 345–355.

    Article  CAS  Google Scholar 

  • Kuiken, T., Gustin, M., Zhang, H., Lindberg, S., & Sedinger, B. (2008b). Mercury emission from terrestrial background surfaces in the eastern USA. II: Air/surface exchange of mercury within forests from South Carolina to New England. Applied geochemistry, 23, 356–368.

    Article  CAS  Google Scholar 

  • Kuo, T., Chang, C.-F., Urba, A., & Kvietkus, K. (2006). Atmospheric gaseous mercury in Northern Taiwan. Science of Total Environment, 368, 10–18.

    Article  CAS  Google Scholar 

  • Lee, X., Benoit, G., & Hu, X. (2000). Total gaseous mercury concentration and flux over a coastal saltmarsh vegetation in Connecticut, USA. Atmospheric Environment, 34, 4205–4213.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., Kim, K.-H., Meyers, T. P., & Owens, J. G. (1995). Micrometeorological gradient approach for quantifying air/surface exchange of mercury vapor: Tests over contaminated soils. Environmental Science & Technology, 29, 126–135.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., Hanson, P. J., Meyers, T. P., & Kim, K.-H. (1998). Air/surface exchange of mercury vapor over forests—the need for a reassessment of continental biogenic emissions. Atmospheric Environment, 32, 895–908.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., Zhang, H., Gustin, M., Vette, A., Marsik, F., Owens, J., et al. (1999). Increases in mercury emissions from desert soils in response to rainfall and irrigation. Journal of Geophysical Research, 104, 21879–21888.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., Dong, W., & Meyers, T. (2002). Transpiration of gaseous elemental mercury through vegetation in a subtropical wetland in Florida. Atmospheric Environment, 36, 5207–5219.

    Article  CAS  Google Scholar 

  • Mäkelä, K. (1995). Valkea-Kotinen. General features of the monitoring area. In I. Bergström, K. Mäkelä, & M. Starr (Eds.), Integrated monitoring programme in Finland. First national report. Report 1:16. Helsinki: Ministry of the Environment, Environmental Policy Department.

    Google Scholar 

  • Munthe J., Bishop K., Driscoll C., Graydon J., Hultberg H., Lindberg S.E., Matzner E., Porvari P., Rea A., Schwesig D., St Louis V., Verta M. (2004) Input–output of Hg in forested catchments in Europe and North America. In 7th International Conference on Mercury as a Global Pollutant, June 27–July 2, 2004, Ljubljana, Slovenia. RMZ—materials and geoenvironment, 51(2) (pp. 1243–1246).

  • Poissant, L., & Casimir, A. (1998). Water–air and soil–air exchange rate of total gaseous mercury measured at background sites. Atmospheric Environment, 32, 883–893.

    Article  CAS  Google Scholar 

  • Poissant, L., Pilote, M., Xu, X., Zhang, H., & Beauvais, C. (2004). Atmospheric mercury speciation and deposition in the Bay St. Francois wetlands. Journal of Geophysical Research, 109, D11301.

    Google Scholar 

  • Porvari, P., Verta, M., Munthe, J., & Haapanen, M. (2003). Forestry practices increase mercury and methyl mercury output from boreal forest catchments. Environmental Science & Technology, 37, 2389–2393.

    Article  CAS  Google Scholar 

  • Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., et al. (2004). Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 123, 159–176.

    Article  Google Scholar 

  • Rinne J. (2001) Application and development of surface flux techniques for measurements of volatile organic compound emissions from vegetation. Finnish Meteorological Institute contributions, 31, ISBN 951-697-545-3.

  • Schlüter, K. (2000). Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environmental Geology, 39, 249–271.

    Article  Google Scholar 

  • Schmolke, S. R., Schroeder, W. H., Kock, H. H., Schneeberger, D., Munthe, J., & Ebinghaus, R. (1999). Simultaneous measurements of total gaseous mercury at four sites on a 800 km transect: Spatial distribution and short-time variability of total gaseous mercury over central Europe. Atmospheric Environment, 33, 1725–1733.

    Article  CAS  Google Scholar 

  • Schroeder, W., & Munthe, J. (1998). Atmospheric mercury—an overview. Atmospheric Environment, 32, 809–822.

    Article  CAS  Google Scholar 

  • Schroeder, W. H., Munthe, J., & Linqvist, O. (1989). Cycling of mercury between water, air and soil compartments of the environment. Water, Air, and Soil Pollution, 48, 337–347.

    Article  CAS  Google Scholar 

  • Schroeder, W. H., Beauchamp, S., Edwards, G., Poissant, L., Rasmussen, P., Tordon, R., et al. (2005). Gaseous mercury emissions from natural sources in Canadian landscapes. Journal of Geophysical Research, 110, D18302.

    Article  Google Scholar 

  • Starr, M., & Ukonmaanaho, L. (2001). Results from the first round of the integrated monitoring soil chemistry subprogramme. In L. Ukonmaanaho & H. Raitio (Eds.), Forest condition in Finland. National report 2000. Research papers, 824 (pp. 140–157). Helsinki: Finnish Forest Research Institute.

    Google Scholar 

  • Xiao, Z. F., Munthe, J., Schroeder, W. H., & Lindqvist, O. (1991). Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden. Tellus, 43B, 267–279.

    CAS  Google Scholar 

  • Zhang, H., Lindberg, S. E., & Kuiken, T. (2008). Mysterious diel cycles of mercury emissions from soils held in the dark at constant temperature. Atmospheric Environment, 42, 5424–5433.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannele Hakola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyllönen, K., Hakola, H., Hellén, H. et al. Atmospheric Mercury Fluxes in a Southern Boreal Forest and Wetland. Water Air Soil Pollut 223, 1171–1182 (2012). https://doi.org/10.1007/s11270-011-0935-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0935-1

Keywords

Navigation