Skip to main content
Log in

Competitive Removal of Cd2+ and Hg2+ Ions from Water Using Titanosilicate ETS-4: Kinetic Behaviour and Selectivity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Mercury and cadmium are priority hazardous substances. Some titanosilicates have been tested for the removal of Cd2+ and Hg2+ from single solutions by ion exchange. In this work, the competition between both contaminants for the exchanger binding sites of titanosilicate Engelhard titanosilicate material number 4 (ETS-4) was studied by performing batch experiments with aqueous solutions containing the two counter ions. The results evidenced the large capacity of ETS-4 and shown that the cadmium(II) diffusivity through the sorbent is higher than that of mercury(II). Furthermore, the ETS-4 exhibited higher kinetic and equilibrium selectivities for Cd2+, which attained values in the ranges 8.9–12.5 and 7.9–12.8, respectively. With respect to modelling, the pseudo-second-order equation described successfully the competitive removal of Cd2+ and Hg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

A:

Counter ion (Cd2+ or Hg2+)

C A :

Concentration of counter ion A in bulk solution

C A,0 :

Initial concentration of counter ion A in bulk solution

C A,eq :

Equilibrium concentration of counter ion A in bulk solution

k 2 :

Second-order rate constant

m :

Mass of titanosilicate ETS-4

q A :

Concentration of counter ion A in the sorbent (ETS-4)

q A,eq :

Equilibrium concentration of counter ion A in the sorbent (ETS-4)

\( S_{12}^{ \text {e}q } \) :

Equilibrium selectivity (Cd2+ relative to Hg2+)

\( S_{12}^{ \text {kin} } \) :

Kinetic selectivity (Cd2+ relative to Hg2+)

t :

Time

V :

Volume of solution

References

  • Barreira, L. D., Lito, P. F., Antunes, B. M., Otero, M., Lin, Z., Rocha, J., et al. (2009). Effect of pH on cadmium(II) removal from aqueous solution using titanosilicate ETS-4. Chemical Engineering Journal, 155(3), 728–735.

    Google Scholar 

  • Behrens, E. A., Poojary, D. M., & Clearfield, A. (1996). Syntheses, crystal structures, and ion-exchange properties of porous titanosilicates, HM3Ti4O4(SiO4)3 · 4H2O (M = H+, K+, Cs+), structural analogues of the mineral pharmacosiderite. Chemistry of Materials, 8(6), 1236–1244.

    Article  CAS  Google Scholar 

  • Camarinha, E. D., Lito, P. F., Antunes, B. M., Otero, M., Lin, Z., Rocha, J., et al. (2009). Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-10. Chemical Engineering Journal, 155(1–2), 108–114.

    Article  CAS  Google Scholar 

  • European Parliament, C. (2001). Decision no 2455/2001/EC of the European Parliament and the Council of the European Union of 20 November 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC. (pp. 5): Official Journal of the European Communities.

  • Ferreira, T. R., Lopes, C. B., Lito, P. F., Otero, M., Lin, Z., Rocha, J., et al. (2009). Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-4. Chemical Engineering Journal, 147(2–3), 173–179.

    Article  CAS  Google Scholar 

  • Greenwood, N. N., & Earnshaw, A. (2005). Chemistry of the elements. UK: Elsevier Butterworth Heinemann.

    Google Scholar 

  • Harrison, W. T. A., Gier, T. E., & Stucky, G. D. (1995). Singly-crystal structure of Cs3HTi4O4(SiO4)3 · 4H2O, a titanosilicate pharmacosiderite analog. Zeolites, 15, 408–412.

    Article  CAS  Google Scholar 

  • Lito, P., Aniceto, J. S., & Silva, C. (2012a). Removal of anionic pollutants from waters and wastewaters and materials perspective for their selective sorption. Water, Air, and Soil Pollution, 223(9), 6133–6155.

    Article  CAS  Google Scholar 

  • Lito, P. F., Cardoso, S. P., Loureiro, J. M., & Silva, C. M. (2012b). Ion exchange equilibria and kinetics. In Inamuddin & M. Luqman (Eds.), Ion exchange technology I (pp. 51–120). Netherlands: Springer.

    Google Scholar 

  • Lopes, C. B., Coimbra, J., Otero, M., Pereira, E., Duarte, A. C., Lin, Z., et al. (2008a). Uptake of Hg2+ from aqueous solutions by microporous titano- and zircono-silicates. Quimica Nova, 31(2), 321–325.

    Article  CAS  Google Scholar 

  • Lopes, C. B., Lito, P. F., Cardoso, S. P., Pereira, E., Duarte, A. C., & Silva, C. M. (2012). Metal recovery, separation and/or pre-concentration. In D. Inamuddin & M. Luqman (Eds.), Ion exchange technology II (pp. 237–322). Netherlands: Springer.

    Google Scholar 

  • Lopes, C. B., Lito, P. F., Otero, M., Lin, Z., Rocha, J., Silva, C. M., et al. (2008b). Mercury removal with titanosilicate ETS-4: batch experiments and modelling. Microporous and Mesoporous Materials, 115(1–2), 98–105.

    Article  CAS  Google Scholar 

  • Lopes, C. B., Otero, M., Lin, Z., Silva, C. M., Pereira, E., Rocha, J., et al. (2010). Effect of pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate. Journal of Hazardous Materials, 175(1–3), 439–444.

    Article  CAS  Google Scholar 

  • Lopes, C. B., Otero, M., Lin, Z., Silva, C. M., Rocha, J., Pereira, E., et al. (2009). Removal of Hg2+ ions from aqueous solution by ETS-4 microporous titanosilicate-Kinetic and equilibrium studies. Chemical Engineering Journal, 151(1–3), 247–254.

    Article  CAS  Google Scholar 

  • Otero, M., Lopes, C. B., Coimbra, J., Ferreira, T. R., Silva, C. M., Lin, Z., et al. (2009). Priority pollutants (Hg2+ and Cd2+) removal from water by ETS-4 titanosilicate. Desalination, 249(2), 742–747.

    Article  CAS  Google Scholar 

  • Poojary, D. M., Bortun, A. I., Bortun, L. N., & Clearfield, A. (1996). Structural studies on the ion-exchanged phases of a porous titanosilicate, Na2Ti2O3SiO4 · 2H2O. Inorganic Chemistry, 35(21), 6131–6139.

    Article  CAS  Google Scholar 

  • Poojary, D. M., Cahill, R. A., & Clearfield, A. (1994). Synthesis, crystal structures, and ion-exchange properties of a novel porous titanosilicate. Chemistry of Materials, 6(2), 2364–2368.

    Google Scholar 

  • Rocha, J., & Lin, Z. (2005). Microporous mixed octahedral-pentahedral-tetrahedral framework silicates. Reviews in Mineralogy and Geochemistry, 57, 173–201.

    Article  CAS  Google Scholar 

  • Zhao, G. X. S., Lee, J. L., & Chia, P. A. (2003). Unusual adsorption properties of microporous titanosilicate ETS-10 toward heavy metal lead. Langmuir, 19(6), 1977–1979.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the Fundação para a Ciência e a Tecnologia for the financial support to Associate Laboratory CICECO (Pest-C/CTM/LA0011/2011), project PTDC/EQU-EQU/100476/2008, and research grants of C.B. Lopes (SFRH/BD/45156/2008) and S.P. Cardoso (SFRH/BD/75164/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardoso, S.P., Lopes, C.B., Pereira, E. et al. Competitive Removal of Cd2+ and Hg2+ Ions from Water Using Titanosilicate ETS-4: Kinetic Behaviour and Selectivity. Water Air Soil Pollut 224, 1535 (2013). https://doi.org/10.1007/s11270-013-1535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1535-z

Keywords

Navigation