Skip to main content
Log in

Photocatalytic Degradation of Dyes Using Carbon Nanotube and Titania Nanoparticle

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this paper, carbon nanotube (CNT) and titania nanoparticle (n-TiO2) were used to degrade dyes using single (UV/CNT/H2O2 and UV/n-TiO2/H2O2) and binary catalyst (UV/CNT/n-TiO2 and UV/CNT/n-TiO2/H2O2) systems. Direct Red 23 and Direct Red 31 were used as model dyes. The surface characteristics of CNT were investigated using Fourier transform infrared and scanning electron microscopy. Photocatalytic dye degradation was studied using UV–Vis spectrophotometer and ion chromatography. The effects of initial dye concentration and salt on dye degradation were investigated. Formate, acetate and oxalate were detected as dominant aliphatic intermediates. Nitrate and sulfate were detected as dye mineralization products. The results indicated that the UV/CNT/n-TiO2/H2O2 could be used as an eco-friendly process to degrade dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amin, N. K. (2009). Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 165, 52–62.

    Article  CAS  Google Scholar 

  • Araña, J., Dona-Rodrıguez, J. M., Tello Rendon, E., Garriga i Cabo, C., Gonzalez-Dıaz, O., Herrera-Melian, J. A., et al. (2003). TiO2 activation by using activated carbon as a support: Part II. Photoreactivity and FTIR study. Applied Catalysis B: Environmental, 44, 153–160.

    Article  Google Scholar 

  • Arsalan-Alaton, I. (2003). A review of the effects of dye-assisting chemicals on advanced oxidation of reactive dyes in wastewater. Coloration Technology, 119, 345–353.

    Article  Google Scholar 

  • Atar, N., Olgun, A., & Çolak, F. (2008). Thermodynamic, equilibrium and kinetic study of the biosorption of basic blue 41 using Bacillus maceran. Engineering in Life Science, 8, 499–506.

    Article  CAS  Google Scholar 

  • Bach, A., & Semiat, R. (2011). The role of activated carbon as a catalyst in GAC/iron oxide/H2O2 oxidation process. Desalination, 273, 57–63.

    Article  CAS  Google Scholar 

  • Bansal, R. C., Donnet, J. B., & Stoeckli, F. (1998). Active carbon. New York: Marcel Dekker.

    Google Scholar 

  • Bhatkhande, D. S., Pangarkar, V. G., & Beenackers, A. A. C. M. (2001). Photocatalytic degradation for environmental applications—a review. Journal of Chemical Technology and Biotechnology, 77, 102–116.

    Article  Google Scholar 

  • Bulut, Y., & Aydin, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194, 259–267.

    Article  CAS  Google Scholar 

  • Demirbas, E., Kobya, M., Oncel, S., & Sencan, S. (2002). Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresource Technology, 84, 291–293.

    Article  CAS  Google Scholar 

  • El-molla, S. A., El-shobaky, G. A., & Ahmed, S. A. S. (2007). Catalytic promotion of activated carbon by treatment with some transition metal cations. Chinese Journal of Catalysis, 28, 611–616.

    Article  CAS  Google Scholar 

  • El-Sheikh, A. H., Al-Degs, Y. S., Newman, A. P., & Lynch, D. E. (2007). Oxidized activated carbon as support for titanium dioxide in UV-assisted degradation of 3-chlorophenol. Separation and Purification Technology, 54, 117–123.

    Article  CAS  Google Scholar 

  • Faria, P. C. C., Orfao, J. J. M., & Pereira, M. F. R. (2005). Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon. Water Research, 39, 1461–1470.

    Article  CAS  Google Scholar 

  • Gao, Y., & Liu, H. (2005). Preparation and catalytic property study of a novel kind of suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber film. Materials Chemistry and Physics, 92, 604–608.

    Article  CAS  Google Scholar 

  • Georgi, A., & Kopinke, F. D. (2005). Interaction of adsorption and catalytic reactions in water decontamination processes Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. Applied Catalysis B: Environmental, 58, 9–18.

    Article  CAS  Google Scholar 

  • Gomes da Silva, C., & Faria, J. L. (2003). Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 155, 133–143.

    Article  CAS  Google Scholar 

  • Hoffmann, M. R., Martin, S. T., Choi, W., & Bahneman, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69–96.

    Article  CAS  Google Scholar 

  • Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., & Hermann, J. M. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31, 145–157.

    Article  CAS  Google Scholar 

  • Huang, H. H., Lu, M. C., Chen, J. N., & Lee, C. T. (2003). Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons. Chemosphere, 51, 935–943.

    Article  CAS  Google Scholar 

  • Ince, N. H., & Apikyan, I. G. (2000). Combination of activated carbon adsorption with light-enhanced chemical oxidation via hydrogen peroxide. Water Research, 34, 4169–4176.

    Article  CAS  Google Scholar 

  • Ince, N. H., Hasan, D. A., Ustun, B., & Tezcanli, G. (2002). Combinative dye bath treatment with activated carbon and UV/H2O2: a case study on Everzol Black-GSP. Water Science and Technology, 46, 51–58.

    CAS  Google Scholar 

  • Klimenko, N. A., Savchina, L. A., Polyakova, T. V., & Kozyatnik, I. P. (2009). Adsorption—catalytic removal of fulvic acids on activated carbons in the presence of hydrogen peroxide. Journal of Water Chemistry and Technology, 31, 92–97.

    Article  Google Scholar 

  • Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations—a review. Applied Catalysis B: Environmental, 49, 1–14.

    Article  CAS  Google Scholar 

  • Kubo, M., Fukuda, H., Chua, X. J., & Yonemoto, T. (2007). Kinetics of ultrasonic degradation of phenol in the presence of composite particles of titanium dioxide and activated carbon. Industrial and Engineering Chemistry Research, 46, 699–704.

    Article  CAS  Google Scholar 

  • Kuo, C. Y. (2009). Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process. Journal of Hazardous Materials, 163, 239–244.

    Article  CAS  Google Scholar 

  • Kurniawan, T. A., & Lo, W. H. (2009). Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment. Water Research, 43, 4079–4091.

    Article  CAS  Google Scholar 

  • Kurniawan, T. A., Lo, W. H., & Chan, G. Y. S. (2006). Degradation of recalcitrant compounds from stabilized landfill leachate using a combination of ozone–GAC adsorption treatment. Journal of Hazardous Materials, 137, 443–455.

    Article  CAS  Google Scholar 

  • Li, Y., Li, X., Li, J., & Yin, J. (2005). Photocatalytic degradation of methyl orange in a sparged tube reactor with TiO2-coated activated carbon composites. Catalysis Communications, 6, 650–655.

    Article  CAS  Google Scholar 

  • Lucking, F., Koser, H., Jank, M., & Ritter, A. (1998). Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Research, 32, 2607–2614.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M. (2011a). Equilibrium, kinetic and thermodynamic of dye removal using alginate from binary system. Journal of Chemical & Engineering Data, 56, 2802–2811.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M. (2011b). Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method. Desalination, 279, 332–337.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M. (2013a). Magnetic ferrite nanoparticle—alginate composite: synthesis, characterization and binary system dye removal. Journal of the Taiwan Institute of Chemical Engineers, 44, 321–329.

    Article  Google Scholar 

  • Mahmoodi, N.M. (2013b). Nickel ferrite nanoparticle: synthesis, modification by surfactant and dye removal ability. Water, Air, & Soil Pollution. 224 (2), art. no. 1419.

  • Mahmoodi, N. M. (2013c). Photocatalytic ozonation of dyes using multiwalled carbon nanotube. Journal of Molecular Catalysis A: Chemical, 366, 254–260.

    Article  CAS  Google Scholar 

  • Matos, J., Laine, J., & Herrmann, J. M. (1998). Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Applied Catalysis B: Environmental, 18, 281–291.

    Article  CAS  Google Scholar 

  • Matos, J., Laine, J., & Herrmann, J. M. (2001). Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania. Journal of Catalysis, 200, 10–20.

    Article  CAS  Google Scholar 

  • Oliveira, L. C. A., Silva, C. N., Yoshida, M. I., & Lago, R. M. (2004). The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition. Carbon, 42, 2279–2284.

    Article  CAS  Google Scholar 

  • Parab, H., Sudersanan, M., Shenoy, N., Pathare, T., & Vaze, B. (2009). Use of agro-industrial wastes for removal of basic dyes from aqueous solutions. Clean, 37, 963–969.

    CAS  Google Scholar 

  • Park, S. J., Chin, S. S., Jia, Y., & Fane, A. G. (2010). Regeneration of PAC saturated by bisphenol A in PAC/TiO2 combined photocatalysis system. Desalination, 250, 908–914.

    Article  CAS  Google Scholar 

  • Pavia, D. L., Lampman, G. M., & Kaiz, G. S. (1987). Introduction to spectroscopy: a guide for students of organic chemistry. New York: W.B. Saunders Company.

    Google Scholar 

  • Puma, G. L., Bono, A., Krishnaiah, D., & Collin, J. G. (2008). Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. Journal of Hazardous Materials, 157, 209–219.

    Article  Google Scholar 

  • Rodriguez-reinoso, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36, 159–175.

    Article  CAS  Google Scholar 

  • Santos, V. P., Pereira, M. F. R., Faria, P. C. C., & Orfao, J. J. M. (2009). Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons. Journal of Hazardous Materials, 162, 736–742.

    Article  CAS  Google Scholar 

  • Tanaka, K., Robledo, S. M., Hisanaga, T., Ali, R., Ramli, Z., & Bakar, W. A. (1999). Photocatalytic degradation of 3,4-xylyl N-methylcarbamate (MPMC) and other carbamate pesticides in aqueous TiO2 suspensions. Journal of Molecular Catalysis A: Chemical, 144, 425–430.

    Article  CAS  Google Scholar 

  • Tang, C., & Chen, V. (2004). The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water Research, 38, 2775–2781.

    Article  CAS  Google Scholar 

  • Wang, S., & Zhou, S. (2011). Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation. Journal of Hazardous Materials, 185, 77–85.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, Y., Hu, Z., Chen, Y., Liu, W., & Zhao, G. (2009). Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities. Journal of Hazardous Materials, 169, 1061–1067.

    Article  CAS  Google Scholar 

  • Wang, H., Dong, S., Chang, Y., & Faria, J. L. (2012). Enhancing the photocatalytic properties of TiO2 by coupling with carbon nanotubes and supporting gold. Journal of Hazardous Materials, 235–236, 230–236.

    Article  Google Scholar 

  • Yeddou, A. R., Nadjemi, B., Halet, F., Ould-Dris, A., & Capart, R. (2010). Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of activated carbon prepared from olive stones. Minerals Engineering, 23, 32–39.

    Article  CAS  Google Scholar 

  • Yu, G., Lu, S., Chen, H., & Zhu, Z. (2005a). Diesel fuel desulfurization with hydrogen peroxide promoted by formic acid and catalyzed by activated carbon. Carbon, 43, 2285–2294.

    Article  CAS  Google Scholar 

  • Yu, G., Lu, S., Chen, H., & Zhu, Z. (2005b). Oxidative desulfurization of diesel fuels with hydrogen peroxide in the presence of activated carbon and formic acid. Energy & Fuels, 19, 447–452.

    Article  CAS  Google Scholar 

  • Yu, Y., Yu, J. C., Chan, C. Y., Che, Y. K., Zhao, J. C., Ding, L., et al. (2005c). Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis A, 289, 186–196.

    Article  CAS  Google Scholar 

  • Yu, Y., Yu, J. C., Chan, C. Y., Che, Y. K., Zhao, J. C., Ding, L., et al. (2005d). Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Applied Catalysis B: Environmental, 61, 1–11.

    Article  CAS  Google Scholar 

  • Zhao, D., Yang, X., Chen, C., & Wang, X. (2013). Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes–TiO2. Journal of Colloid and Interface Science, 398, 234–239.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niyaz Mohammad Mahmoodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoodi, N.M. Photocatalytic Degradation of Dyes Using Carbon Nanotube and Titania Nanoparticle. Water Air Soil Pollut 224, 1612 (2013). https://doi.org/10.1007/s11270-013-1612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1612-3

Keywords

Navigation