Skip to main content
Log in

Traffic-Related Pollutants in Roadside Soils of Different Countries in Europe and Asia

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We investigated the magnetic and chemical properties of the roadside soil samples collected from five European and Asian countries. Spots in which cars slowed down and/or accelerated due to the traffic organization (speed limits, junctions, and traffic lights) were selected for sampling. Apart from the Zabrze site (Poland), the magnetic susceptibility and heavy metal contents decreased with increasing distance from the road edge. The highest mass-specific magnetic susceptibility values (χ) were observed in the samples collected from Mumbai (India) and Zabrze (Poland). Moreover, the high contents of Fe, Ni, Mn, and Co were observed in Mumbai, whereas in Zabrze, all the examined elements demonstrated high contents, except for Co. Analyses revealed that magnetite was the main magnetic mineral in the roadside soil samples. The high correlation coefficients (r = 0.87) between the magnetic susceptibility values and the total Fe content demonstrated that Fe occurred mainly as ferrimagnetic particles of technogenic origin resulting from traffic emissions. The traffic origin of the pollutants was also confirmed by the increased contents of the typically anthropogenic metals (Pb, Zn, Cd, and Cu) and a good correlation (r = 0.83) between the Ti and Mo contents, which do not occur in natural associations. The ratio between particular polycyclic aromatic hydrocarbons (PAHs) and high content of PAHs typical for car exhaust also implied traffic as their main source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environmental International, 30(8), 1009–1017.

    Article  CAS  Google Scholar 

  • Bäckström, M., Nilsson, U., Håkansson, K., Allard, B., & Karlsson, S. (2003). Speciation of heavy metals in road runoff and roadside total deposition. Water Air and Soil Pollution, 147, 343–366.

    Article  Google Scholar 

  • Beckwith, P. R., Ellis, J. B., Revitt, D. M., & Oldfield, F. (1986). Heavy metal and magnetic relationships for urban source sediments. Physics of the Earth and Planetary Interiors, 42, 67–75.

    Article  CAS  Google Scholar 

  • Bhupander, K., Gargi, G., Richa, G., Dev, P., Sanjay, K., & Shekhar, S. C. (2012). Distribution, composition profiles and source identification of polycyclic aromatic hydrocarbons in roadside soil of Delhi, India. Journal of Environment and Earth Science, 2(1), 10–22.

    Google Scholar 

  • Blume, H. P. (1989). Classification of soils in urban agglomerations. Catena, 16, 268–275.

    Article  Google Scholar 

  • Bućko, M. S., Magiera, T., Pesonen, L. J., & Janus, B. (2010). Magnetic, geochemical, and microstructural characteristics of road dust on roadsides with different traffic volumes case study from Finland. Water, Air, and Soil Pollution, 209, 295–306.

    Article  Google Scholar 

  • Bućko, M. S., Magiera, T., Johanson, B., Petrovský, E., & Pesonen, L. J. (2011). Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses. Environmental Pollution, 159, 1266–1276.

    Article  Google Scholar 

  • Budzinski, H., Jones, I., Bellocq, J., Piérard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58, 85–97.

    Article  CAS  Google Scholar 

  • Chaparro, M. A. E., Marie, D. C., Gogorza, C. S. G., Navas, A., & Sinito, A. M. (2010). Magnetic studies and scanning electron microscopy-X-ray energy dispersive spectroscopy analyses of road sediments, soils and vehicle-derived emissions. Studia Geophysica et Geodeatica., 54, 633–650.

    Article  Google Scholar 

  • Chen, X., Xia, X., Zhao, Y., & Zhang, P. (2010). Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. Journal of Hazardous Materials, 181, 640–646.

    Article  CAS  Google Scholar 

  • D’Emilio, M., Caggiano, R., Macchiato, M., Ragosta, M., & Sabia, S. (2012). Soil heavy metal contamination in an industrial area: analysis of the data collected during a decade. Environmental Monitoring and Assessment, 185(7), 5951–5964.

    Article  Google Scholar 

  • Davis, A. P., Shokouhian, M., & Shubei, N. S. (2001). Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere, 44, 997–1009.

    Article  CAS  Google Scholar 

  • Day, R., Fuller, M., & Schmidt, V. A. (1977). Hysteresis properties of titanomagnetites: grain size and compositional dependence. Physics of the Earth and Planetary Interiors, 13, 260–267.

    Article  Google Scholar 

  • Dearing, J., Dann, R., Hay, K., Lees, J., Loveland, P., Maher, B., & O’Grady, K. (1996). Frequency-dependent susceptibility measurements of environmental materials. Geophysical Journal International, 124, 228–240.

    Article  Google Scholar 

  • Dunlop, D. J. (2002). Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of geophysical Research, 107(B3), 1–22.

    Google Scholar 

  • Duong, T. T. T., & Lee, B.-K. (2011). Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management, 92, 554–562.

    Article  CAS  Google Scholar 

  • Duval, M.M., & Friedlander, S.K., (1981). Source resolution of polycyclic aromatic hydrocarbons in Los Angeles atmosphere. Washington DC: US Environmental Protection Agency, [EPA-600/2-81-161].

  • Fergusson, J. E. (1986). Lead: petrol lead in the environment and its contribution to human blood lead levels. Science of the Total Environment, 50, 1–54.

    Article  CAS  Google Scholar 

  • Flanders, P. J. (1994). Collection, measurement, and analysis of airborne magnetic particulates from pollution in the environment. Journal of Applied Physics, 75, 5931–5936.

    Article  CAS  Google Scholar 

  • Fromme, H., Oddoy, A., Piloty, M., Krause, M., & Lahrz, T. (1998). Polycyclic aromatic hydrocarbons (PAH) and diesel engine emission (elemental carbon) inside a car and subway train. Science of the Total Environment, 217(1–2), 165–173.

    Article  CAS  Google Scholar 

  • Gautam, P., Blaha, U., & Appel, E. (2005). Magnetic susceptibility of dust-loaded leaves as a proxy of traffic related heavy metal pollution in Kathmandu city, Nepal. Atmospheric Environment, 39(12), 2201–2211.

    Article  CAS  Google Scholar 

  • Goddu, S. R., Appel, E., Jordanova, D., & Wehland, R. (2004). Magnetic properties of road dust from Visakhapatnam (India)—relationship to industrial pollution and road traffic. Physics and Chemistry of the Earth, 29(13,14), 985–995.

    Article  Google Scholar 

  • Halsall, C. J., Maher, B. A., Karloukovski, V. V., Shah, P., & Watkins, S. J. (2008). A novel approach to investigating indoor/outdoor pollution links: combined magnetic and PAH measurements. Atmospheric Environment, 42, 8902–8909.

    Article  CAS  Google Scholar 

  • Hildemann, L. M., Markowski, G. R., & Cass, G. R. (1991). Chemical-composition of emissions from urban sources of fine organic aerosol. Environmental Science and Technology, 25, 744–759.

    Article  CAS  Google Scholar 

  • Ho, Y. B., & Tai, K. M. (1988). Elevated levels of lead and other metals in roadside soil and grass and their use to monitor aerial metal depositions in Hong Kong. Environmental Pollution, 49, 37–51.

    Article  CAS  Google Scholar 

  • Hoffmann, V., Knab, M., & Appel, E. (1999). Magnetic susceptibility mapping of roadside pollution. Journal of Geochemical Exploration, 66, 313–326.

    Article  CAS  Google Scholar 

  • Hunt, A., Jones, J. M., & Oldfield, F. (1984). Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. Science of the Total Environment, 33, 129–139.

    Article  CAS  Google Scholar 

  • Iijima, A., Sato, K., Yano, K., Tago, H., Kato, M., Kimura, H., & Furuta, N. (2007). Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmospheric Environment, 41, 4908–4919.

    Article  CAS  Google Scholar 

  • Jordanova, N., Jordanova, D., & Tsacheva, T. (2008). Application of magnetometry for delineation of anthropogenic pollution in areas covered by various soil types. Geoderma, 144, 557–571.

    Article  CAS  Google Scholar 

  • Jordanova, D., Petrosv, P., Hoffmann, V., Gocht, T., Panaiotu, C., Tsacheva, T., & Jordanova, N. (2010). Magnetic signature of different vegetation species in polluted environment. Studia Geophysica et Geodetica, 54(3), 417–442.

    Article  Google Scholar 

  • Jordanova, D., Jordanova, N., Lanos, P., Petrov, P., & Tsacheva, T. (2012). Magnetism of outdoor and indoor settled dust and its utilization as a tool for revealing the effect of elevated particulate air pollution on cardiovascular mortality. Geochemistry Geophysicists Geosystems, 13, Q08Z49. doi:10.1029/2012GC004160.

    Google Scholar 

  • Jordanova, D., Jordanova, N., & Petrov, P. (2014). Magnetic susceptibility of road deposited sediments at a national scale—relation to population size and urban pollution. Environmental Pollution, 189, 239–251.

    Article  CAS  Google Scholar 

  • Kavouras, I., Lawrence, J., Koutrakis, P., Stephanou, E., & Oyola, P. (1999). Measurements of particulate aliphatic and polynuclear aromatic hydrocarbons in Santiago de Chile: source reconciliation and evaluation of sampling artifacts. Atmospheric Environment, 33, 4977–4986.

    Article  CAS  Google Scholar 

  • Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Von Baer, D., & Oyola, P. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science and Technology, 35, 2288–2294.

    Article  CAS  Google Scholar 

  • Kennedy, P., & Gadd, J. (2003). Preliminary examination of trace elements in tires, brake pads, and road bitumen in New Zealand. New Zealand: Prepared for Ministry of Transport.

    Google Scholar 

  • Khaiwal, R., Bencs, L., Wauters, E., Hoog, J. D., Deutsch, F., Roekens, E., Bleux, N., Berghmans, P., & Grieken, R. V. (2006). Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmospheric Environment, 40, 771–785.

    Article  Google Scholar 

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29, 533–542.

    Article  CAS  Google Scholar 

  • Khan, A., Ishaq, M., & Khan, M. A. (2008). Effect of vehicle exhaust on the quantity of polycyclic aromatic hydrocarbons (PAHs) in soil. Environmental Monitoring and Assessment, 137(1–3), 363–369.

    Article  CAS  Google Scholar 

  • Khan, M. N., Wasim, A. A., Sarwar, A., & Rasheed, M. F. (2011). Assessment of heavy metal toxicants in the roadside soil along the N-5, National Highway, Pakistan. Environmental Monitoring and Assessment, 182(1–4), 587–595.

    Article  CAS  Google Scholar 

  • Kim, W., Doh, S.-J., & Yu, Y. (2009). Anthropogenic contribution of magnetic particulates in urban roadside dust. Atmospheric Environment, 43, 3137–3144.

    Article  CAS  Google Scholar 

  • Lin, C.-C., Chen, S.-J., & Huang, K. L. (2005). Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science and Technology, 39, 8113–8122.

    Article  CAS  Google Scholar 

  • Long, Y., Chi, G., Qing, H., Dai, T., & Wu, Q. (2011). Sources of polycyclic aromatic hydrocarbons in street dust from the Chang-Zhu-Tan Region, Hunan, China. Journal of Environmental Protection, 2(10), 1331–1340.

    Article  CAS  Google Scholar 

  • Lu, S. G., Wang, H. Y., & Guo, J. L. (2011). Magnetic enhancement of urban roadside soils as a proxy of degree of pollution by traffic-related activities. Environmental Earth Sciences, 64(2), 359–371.

    Article  CAS  Google Scholar 

  • Magiera, T., Strzyszcz, Z., & Rachwał, M. (2007). Mapping particulate pollution loads using soil magnetometry in urban forests in Upper Silesia Industrial Region. Poland, Forest Ecology and Management, 248, 36–42.

    Article  Google Scholar 

  • Maher, B. A. (1998). Magnetic properties of modern soils and loessic paleosols: implications for paleoclimate. Paleogeography, Paleoclimatology, Paleoecology, 137, 25–54.

    Article  Google Scholar 

  • Maher, B. A., Moore, C., & Matzka, J. (2008). Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmospheric Environment, 33, 2967–2977.

    Google Scholar 

  • Marie, D. C., Chaparro, M. A. E., Gogorza, C. S. G., Navas, A., & Sinito, A. M. (2010). Vehicle-derived emissions and pollution on the road Autovia2 investigated by rock-magnetic parameters: a case of study from Argentina. Studia Geophysica et Geodeatica, 54, 135–152.

    Article  Google Scholar 

  • Marr, L. C., Kirchstetter, T. W., Harley, R. A., Miguel, A. H., Herring, S. V., & Hammond, S. K. (1999). Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environmental Science and Technology, 33, 3091–3099.

    Article  CAS  Google Scholar 

  • Mastral, A., & Callen, M. S. (2000). A  review on PAH emissions from energy generation. Environmental Science and Technology, 34, 3051–3057.

  • Miguel, A. H., Kirchstetter, T. W., & Harley, R. A. (1998). On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environmental Science and Technology, 32, 450–455.

    Article  CAS  Google Scholar 

  • Neilson, A. H. (1998). The handbook of environmental chemistry 3 J: PAHs and related compounds biology (pp. 312–350). Berlin: Springer.

    Book  Google Scholar 

  • Nguyen, T. C., Loganathan, P., Nguyen, T. V., Vigneswaran, S., Kandasamy, J., Slee, D., Stevenson, G., & Naidu, R. (2014). Polycyclic aromatic hydrocarbons in road-deposited sediments, water sediments, and soils in Sydney, Australia: comparisons of concentration distribution, sources and potential toxicity. Ecotoxicology and Environmental Safety, 104, 339–348.

    Article  CAS  Google Scholar 

  • Olson, K. W., & Skogerboe, R. K. (1975). Identification of soil lead compounds from automotive sources. Environmental Science and Technology, 9, 227–230.

    Article  CAS  Google Scholar 

  • Pio, C. A., Alves, C. A., & Duarte, A. C. (2001). Identification, abundance and origin of atmospheric organic particulate matter in a Portuguese rural area. Atmospheric Environment, 35, 1365–1375.

    Article  CAS  Google Scholar 

  • Qiao, M., Cai, C., Huang, Y., Liu, Y., Lin, A., & Zheng, Y. (2011). Characterization of soil heavy metal contamination and potential health risk in metropolitan region of northern China. Environmental Monitoring and Assessment, 172(1–4), 353–365.

    Article  CAS  Google Scholar 

  • Sagnotti, L., Macrì, P., Egli, R., & Mondino, M. (2006). Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources. Journal of Geophysical Research, 111, B12S22.

    Article  Google Scholar 

  • Sagnotti, L., Taddeucci, J., Winkler, A., & Cavallo, A. (2009). Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochemistry, Geophysics, Geosystems, 10(8).

  • Strzyszcz, Z. (1993). Magnetic susceptibility of soils in the areas influenced by industrial emissions. In R. Schulin (Ed.), Soil monitoring (pp. 255–269). Monte Verita: BirkhäuserVerlag Basel.

    Chapter  Google Scholar 

  • Strzyszcz, Z., Magiera, T., & Heller, F. (1996). The influence of industrial immisions on the magnetic susceptibility of soils in Upper Silesia. Studia Geophysica et Geodetica, 40, 276–286.

    Article  Google Scholar 

  • Takada, H., Onda, T., & Ogura, T. (1990). Determination of polycyclic aromatic hydrocarbons in urban street dusts and their source materials by gas chromatography. Environmental Science and Technology, 24, 1179–1186.

    Article  CAS  Google Scholar 

  • Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: a review. Science of the Total Environment, 400, 270–282.

    Article  CAS  Google Scholar 

  • Wahlin, P., Berkowicz, R., & Palmgren, F. (2006). Characterization of traffic generated particulate matter in Copenhagen. Atmospheric Environment, 40, 2151–2159.

    Article  CAS  Google Scholar 

  • Wang, D. G., Tian, F. L., Yang, M., Liu, C. L., & Li, Y. F. (2009). Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China. Environmental Pollution, 157(5), 1559–1564.

    Article  CAS  Google Scholar 

  • Ward, N.I., Brooks, R.R., Roberts, E., & Boswell, C.R. (1977). Heavy-metal pollution from automotive emissions and its effect on roadside soils and pasture species in New Zealand, Environmental Science Technology, Vol/Issue: 11:9.

  • Wawer, M., Magiera, T., Ojha, G., Appel, E., Busoils, A. S., & Kusza, G. (2015). Characteristics of current roadside pollution using test-monitoring plots. Science of the Total Environment, 505, 759–804.

    Article  Google Scholar 

  • Westerlund K.-G. (2001). Metal emissions from Stockholm traffic—wear of brake lining. Report from SLB-Analys, p. 3.

  • White, P. A., Rasmussen, J. B., & Blaise, C. (1998). Genotoxic substances in the St. Lawrence system I: industrial genotoxins sorbed to particulate matter in the St. Lawrence, St. Maurice and Saguenay Rivers, Canada. Environmental Toxicological Chemistry, 17, 286–303.

    CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

  • Zhang, X. Y., Lin, F. F., Wong Mike, T. F., Feng, X. L., & Wang, K. (2009). Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China. Environmental Monitoring and Assessment, 154, 439–449.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Ministry of Science and Higher Education and National Science Centre in collaboration with the German Research Foundation under scientific project no. 676/N-DFG/2010/0 entitled “Characteristics of current roadside pollution under different environmental conditions – fundamentals for the development of a new roadside pollution monitoring concept”. The authors thank the professional ProofreadingServices.com for language corrections. We appreciate the constructive comments by an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Wawer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wawer, M., Magiera, T., Ojha, G. et al. Traffic-Related Pollutants in Roadside Soils of Different Countries in Europe and Asia. Water Air Soil Pollut 226, 216 (2015). https://doi.org/10.1007/s11270-015-2483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2483-6

Keywords

Navigation