Skip to main content
Log in

Wastewater Nitrogen Contributions to Coastal Plain Watersheds, NC, USA

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nitrogen inputs to coastal watersheds have been linked to eutrophication. However, the role that domestic sources of wastewater play in contributing nitrogen to coastal watersheds is not well known in the southeastern USA. In a yearlong study (2011–2012), nitrogen concentrations were compared in watersheds served by septic systems and a centralized sewer system in the Coastal Plain of North Carolina. Surface and groundwater samples from septic systems and sewer watersheds were analyzed for total dissolved nitrogen (TDN), total nitrogen, and nitrogen and oxygen isotopes in nitrate. Groundwater beneath the drainfield and adjacent to streams had median concentrations of TDN at 5.9 and 4.4 mg/L, respectively. Additionally, median groundwater-transported loads of TDN to the stream from septic systems sites (0.6 kg-TDN/year) were significantly greater than sites in sewer watersheds (0.2 kg-TDN/year). Isotopic analyses revealed that effluent from septic systems was the primary source of nitrate in watersheds served by septic systems, while fertilizer and/or soil organic matter were dominant sources of nitrate in sewer watersheds. Nitrogen exported from septic systems contributed to elevated nitrogen concentrations in groundwater and streams throughout the watershed, whereas nitrogen exports from sewers were focused at a single point source and affected surface water concentrations. Based on watershed TDN exports from septic systems minus TDN exports from sewers watersheds, it was estimated that septic systems contributed 1.6 kg TDN/ha/year to watershed exports of TDN. Overall, septic systems and sewers contributed to elevated nitrogen loading and should be considered in nutrient-sensitive watershed management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TDN:

Total dissolved nitrogen

TN:

Total nitrogen

References

  • Alameddine, I., Qian, S. S., & Reckhow, K. H. (2011). A Bayesian changepoint—threshold model to examine the effect of TMDL implementation on the flow-nitrogen concentration relationship in the Neuse River basin. Water Research, 45, 51–62.

    Article  CAS  Google Scholar 

  • Andres, A. S., & Sims, J. T. (2013). Assessing potential impacts of a wastewater rapid infiltration basin system on groundwater quality: a Delaware case study. Journal of Environmental Quality, 42, 391–404.

    Article  CAS  Google Scholar 

  • ArandaCirerol, N., Comín, F., & Herrera-Silveira, J. (2011). Nitrogen and phosphorus budgets for the Yucatán littoral: an approach for groundwater management. Environmental Monitoring and Assessment, 172, 493–505.

    Article  CAS  Google Scholar 

  • Aravena, R., & Robertson, W. D. (1998). Use of multiple isotope tracers to evaluate denitrification in ground water: study of nitrate from a large-flux septic system plume. Ground Water, 36, 975–982.

    Article  CAS  Google Scholar 

  • Becher, K. D., Schnoebelen, D. J., & Akers, K. K. B. (2000). Nutrients discharged to the Mississippi river from eastern Iowa watersheds. Journal of the American Water Resources Association, 36(1), 161–173.

    Article  CAS  Google Scholar 

  • Bouwer, H., & Rice, R. C. (1976). A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, 12(3), 423–428.

    Article  Google Scholar 

  • Bowen, J. L., & Valiela, I. (2001). The ecological effects of urbanization of coastal watersheds: historical increases in nitrogen loads and eutrophication of Waquoit Bay estuaries. Canadian Journal of Fisheries and Aquatic Sciences, 58(8), 1489–1500.

    Article  CAS  Google Scholar 

  • Bowen, J. L., Kroeger, K. D., Tomasky, G., Pabich, W. J., Cole, M. L., Carmichael, R. H., & Valiela, I. (2007). A review of land-sea coupling by groundwater discharge of nitrogen to New England estuaries: mechanisms and effects. Applied Geochemistry, 22(1), 175–191.

    Article  CAS  Google Scholar 

  • Burkholder, J. M., Dickey, D. A., Kinder, C. A., Reed, R. E., Mallin, M. A., McIver, M. R., Cahoon, L. B., Melia, G., Brownie, C., Smith, J., Deamer, N., Springer, J., Glasgow, H. B., & Toms, D. (2006). Comprehensive trend analysis of nutrients and related variables in a large eutrophic estuary: a decadal study of anthropogenic and climatic influences. Limnology and Oceanography, 51, 463–487.

    Article  CAS  Google Scholar 

  • Carlile, B. L., Cogger, C. G., Steinbeck, S. J. (1981). Movement and fate of septic tank effluent in soils of the North Carolina coastal plain, part I. Department of Soil Science, NCSU–Sanitation Branch, North Carolina Division of Health Services.

  • Casciotti, K. L., Sigman, D. M., Galanter Hastings, M., Böhlke, J. K., & Hilkert, A. (2002). Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry, 74(19), 4905–4912.

    Article  CAS  Google Scholar 

  • Cole, M. L., Kroeger, K. D., Mcclelland, J. W., & Valiela, I. (2006). Effects of watershed land use on nitrogen concentrations and δ15nitrogen in groundwater. Biogeochemistry, 77, 199–215.

    Article  CAS  Google Scholar 

  • Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323, 1014–1015.

    Article  CAS  Google Scholar 

  • Corbett, D. R., Dillon, K., Burnett, W., & Schaefer, G. (2002). The spatial variability of nitrogen and phosphorus concentration in a sand aquifer influenced by onsite sewage treatment and disposal systems: a case study on St. George Island, Florida. Environmental Pollution, 117(2), 337–345.

    Article  Google Scholar 

  • Core Team, R. (2013). A language and environment for statistical computing. Vienna: R Foundation.

    Google Scholar 

  • Desimone, L. A., & Howes, B. L. (1996). Denitrification and nitrogen transport in a coastal aquifer receiving wastewater discharge. Environmental Science and Technology, 30, 1152–1162.

    Article  CAS  Google Scholar 

  • Diaz, R. J. (2002). Hypoxia and anoxia as global phenomena. In: Thurston, R. V. (Ed.), Proceedings of the Sixth International Symposium on Fish Physiology, Toxicology, and Water Quality. 22–26 Jan 2001. La Paz, Baja, Mexico. Ecosystems Research Division: Athens, GA.

  • Dugdale, R. C., & Goering, J. J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography, 12, 196–206.

    Article  CAS  Google Scholar 

  • EEG. (2012). Water quality restoration for meeting house branch: plan and implementation. Pamlico-Tar River Foundation. Ecosystem Enhancement Grant. Submitted 30 Oct 2012.

  • Ferrell, G. M., & Grimes, B. H. (2014). Effects of centralized and onsite wastewater treatment on the occurrence of traditional and emerging contaminants in streams. Journal of Environmental Health, 76(6), 18–27.

    CAS  Google Scholar 

  • Garcia, S. N., Clubbs, R. L., Stanley, J. K., Scheffe, B., Yelderman, J. C., Jr., & Brooks, B. W. (2013). Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems. Chemosphere, 92, 38–44.

    Article  CAS  Google Scholar 

  • Geza, M., & McCray, J. E. (2010). Model evaluation of potential impacts of on-site wastewater systems on phosphorus in Turkey Creek watershed. Journal of Environmental Quality, 39, 1636–1646.

    Article  CAS  Google Scholar 

  • Glibert, P. M. (1988). Primary productivity and pelagic nitrogen cycling. In T. H. Blackburn & J. Sorensen (Eds.), Nitrogen cycling in coastal marine environments (pp. 3–31). New York: Wiley.

    Google Scholar 

  • Granger, J., & Sigman, D. M. (2009). Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Communications in Mass Spectrometry, 23(23), 3753–3762.

    Article  CAS  Google Scholar 

  • Hardison, E. C., O’Driscoll, M. A., DeLoatch, J. P., Howard, R. J., & Brinson, M. M. (2009). Urban land use, channel incision, and water table decline along coastal plain streams, North Carolina. Journal of the American Water Resources Association, 45(4), 1032–1046.

    Article  Google Scholar 

  • Harlin, M. M. (1993). Changes in major plant groups following nutrient enrichment. In A. J. McComb (Ed.), Eutrophic shallow estuaries and lagoons (pp. 173–187). Boca Raton: CRC Press, Inc.

    Google Scholar 

  • Harman, J., Robertson, W. D., Cherry, J. A., & Zanini, L. (1996). Impacts on a sand aquifer from an old septic system: nitrate and phosphate. Groundwater, 34(6), 1105–1114.

    Article  CAS  Google Scholar 

  • Heath, R. C. (1983). Basic ground-water hydrology. US Geological Survey, Water Supply Paper 2220.

  • Heathwaite, L., Sharpley, A., & Gburek, W. (2000). A conceptual approach for integrating phosphorus and nitrogen management at watershed scales. Journal of Environmental Quality, 29, 158–166.

    Article  CAS  Google Scholar 

  • Hecky, R. E., & Kilham, P. (1988). Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography, 33, 796–822.

    Article  CAS  Google Scholar 

  • Howarth, R., & Marino, R. (2006). Nitrogen as the limiting nutrient for eutrophication in coastal and marine ecosystems: evolving views over three decades. Limnology and Oceanography, 51, 364–376.

    Article  CAS  Google Scholar 

  • Howarth, R., Boyer, E., Pabich, W., & Galloway, J. (2002). Nitrogen use in the United States from 1961–2000 and potential future trends. Ambio, 31, 88–96.

    Article  Google Scholar 

  • Humphrey, C. P., O’Driscoll, M. A., & Zarate, M. A. (2010). Controls on groundwater nitrogen contributions from on-site wastewater systems in coastal North Carolina. Water Science and Technology, 62(6), 1448–1455.

    Article  CAS  Google Scholar 

  • Humphrey, C. P., O’Driscoll, M. A., & Armstrong, M. C. (2012). Onsite wastewater system nitrogen loading to groundwater in the Newport River watershed, North Carolina. Environment and Natural Resources Research, 2(4), 70–79.

    Article  Google Scholar 

  • Humphrey, C. P., O’Driscoll, M. A., Deal, N., Lindbo, D., Zarate-Bermudez, M. A., & Thieme, S. (2013). On-site wastewater system nitrogen contributions to groundwater in coastal North Carolina. Journal of Environmental Health, 76(5), 16–22.

    CAS  Google Scholar 

  • Iverson, G. (2013). A comparison of watershed nitrogen loading and watershed nitrogen exports from on-site wastewater treatment systems and centralized sewer systems in the North Carolina Coastal Plain. M.S. Thesis, East Carolina Univ., Greenville, NC.

  • Jetten, M. S. M., van Niftrik, L., Strous, M., Kartal, B., Keltjens, J. T., & Op den Camp, H. J. M. (2009). Biochemistry and molecular biology of anammox bacteria. Critical Reviews in Biochemistry and Molecular Biology, 44(2–3), 65–84.

    CAS  Google Scholar 

  • Jha, M. K., Wolter, C. F., Schilling, K. E., & Gassman, P. W. (2010). Assessment of total maximum daily load implementation strategies for nitrate impairment of the Raccoon River, Iowa. Journal of Environmental Quality, 39, 1317–1327.

    Article  CAS  Google Scholar 

  • Jin, Z., Chen, Y., Wang, F., & Ogura, N. (2004). Detection of nitrate sources in urban groundwater by isotopic and chemical indicators, Hangzhou City, China. Environmental Geology, 45, 1017–1024.

    Article  CAS  Google Scholar 

  • Kendall, C., & McDonnell, J. J. (1998). Isotope tracers in catchment hydrology. Elsevier Science B.V.

  • Kroeger, K. D., Cole, M. L., York, J. K., & Valiela, I. (2006). Nitrogen loads to estuaries from wastewater plumes: modeling and isotopic approaches. Groundwater, 44, 188–200.

    Article  CAS  Google Scholar 

  • Mallin, M. A., Paerl, H. W., Rudek, J., & Bates, P. W. (1993). Regulation of estuarine primary production by watershed rainfall and river flow. Marine Ecology Progress Series, 98, 199–203.

    Article  Google Scholar 

  • Mallin, M. A., McIver, M. R., Wells, H. A., Parsons, D. C., & Johnson, V. L. (2005). Reversal of eutrophication following sewage treatment upgrades in the New River estuary, North Carolina. Estuaries, 28(5), 750–760.

    Article  CAS  Google Scholar 

  • Mason, C. F. (2002). Biology of freshwater pollution (4th ed.). England: Pearson Education Limited.

    Google Scholar 

  • Meeroff, D. E., Bloetscher, F., Bocca, T., & Morin, F. (2008). Evaluation of water quality impacts of on-site treatment and disposal systems on urban coastal waters. Water, Air, and Soil Pollution, 192, 11–24.

    Article  CAS  Google Scholar 

  • Meile, C., Porubsky, W. P., Walker, R. L., & Payne, K. (2010). Natural attenuation of nitrogen loading from septic effluents: spatial and environmental controls. Water Research, 44, 1399–1408.

    Article  CAS  Google Scholar 

  • NCDENR. (2005). Nonpoint source pollution reduction report. 2005 Annual NPS Report to U.S. Environmental Protection Agency. North Carolina Department of Environment and Natural Resources, Division of Water Quality, October 2004–September 2005. Available at: http://test.enr.state.nc.us/stormwater/pdfs/2005%20Annual%20319%20Report%20-%20Final.pdf/.

  • O’Driscoll, M., Humphrey, C., Deal, N., Lindbo, D., & Zarate-Bermudez, M. (2014). Meteorological influences on nitrogen dynamics of a coastal onsite wastewater treatment system. Journal of Environmental Quality. doi:10.2134/jeq2014.05.0227.

    Google Scholar 

  • Oakley, S. M., Gold, A. J., & Oczkowski, A. J. (2010). Nitrogen control through decentralized wastewater treatment performance and alternative management strategies. Ecological Engineering, 36, 1520–1531.

    Article  Google Scholar 

  • Oliver, C. W., Radcliffe, D. E., Risse, L. M., Habteselassie, M., Mukundan, R., Jeong, J., & Hoghooghi, N. (2014). Quantifying the contribution of on-site wastewater treatment systems to stream discharge using the SWAT model. Journal of Environmental Quality, 43, 539–548.

    Article  CAS  Google Scholar 

  • Paerl, H. W. (2009). Controlling eutrophication along the freshwater-marine continuum: dual nutrient (N and P) reductions are essential. Estuaries and Coasts, 32, 593–601.

    Article  CAS  Google Scholar 

  • Paerl, H. W., Crocker, K. M., & Prufert, L. E. (1987). Limitation of N2 fixtation in coastal marine waters: relative importance of molybdenum, iron, phosphorus and organic matter availability. Limnology and Oceanography, 32, 525–536.

    Article  CAS  Google Scholar 

  • Philips, J. D. (1989). An evaluation of the factors determining the effectiveness of water quality buffer zones. Journal of Hydrology, 107, 133–145.

    Article  Google Scholar 

  • Pradhan, S. S., Hoover, M. T., Austin, R. E., & Devine, H. A. (2007). Potential nitrogen contributions from on-site wastewater treatment systems to North Carolina’s river basins and sub-basins. Raleigh: North Carolina Agricultural Research Service Technical Bulletin 324.

    Google Scholar 

  • Reay, W. G. (2004). Septic tank impacts on groundwater quality and nearshore sediment nutrient flux. Groundwater, 42(7), 1079–1089.

    Article  Google Scholar 

  • Robertson, W. D., & Cherry, J. A. (1992). Hydrogeology of an unconfined sand aquifer and its effect on the behavior of nitrogen from a large-flux septic system. Applied Hydrogeology 0, 32–44.

  • Robertson, W. D., & Cherry, J. A. (1995). In situ denitrification of septic system nitrate using reactive porous media barriers: field trials. Groundwater, 33(1), 99–111.

    Article  CAS  Google Scholar 

  • Robertson, W. D., Cherry, J. A., & Sudicky, E. A. (1991). Ground-water contamination from two small septic systems on sand aquifers. Groundwater, 29(1), 82–92.

    Article  CAS  Google Scholar 

  • Schipper, L. A., Cameron, S. C., & Warneke, S. (2010). Nitrate removal from three different effluents using large-scale denitrification beds. Ecological Engineering, 36, 1552–1557.

    Article  Google Scholar 

  • Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., & Böhlke, J. K. (2001). A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry, 73(17), 4145–4153.

    Article  CAS  Google Scholar 

  • Silva, S. R., Ging, P. B., Lee, R. W., Ebbert, J. C., Tesoriero, A. J., & Inkpen, E. L. (2002). Forensic applications of nitrogen and oxygen isotopes of nitrate in an urban environment. Environmental Forensics, 3, 125–130.

    Article  CAS  Google Scholar 

  • Stow, C. A., Borsuk, M. E., & Stanley, D. W. (2001). Long-term changes in watershed nutrient inputs and riverine exports in the Neuse River, North Carolina. Water Research, 35, 1489–1499.

    Article  CAS  Google Scholar 

  • National Cooperative Soil Survey. (1971). Table 2—evolution of permeability and saturated hydraulic conductivity. In: USDA. (2014). Saturated hydraulic conductivity: water movement concepts and class history. Soil Survey Technical Note 6. Available at: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_053573/.

  • USDA. (1974). Pitt County soil survey. United States Department of Agriculture, Soil Conservation Service. Available at: http://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/north_carolina/pittNC1974/pittNC1974.pdf/ Cited 22 Jul 2014.

  • Valiela, I., Collins, G., Kremer, J., Lajtha, K., Geist, M., Seely, B., Brawley, J., & Sham, C. H. (1997). Nitrogen loading from coastal watersheds to receiving estuaries: new method and application. Ecological Applications, 7(2), 358–380.

    Article  Google Scholar 

  • Vellidis, G., Lowrance, R., & Gay, P. (2003). Nutrient transport in a restored riparian wetland. Journal of Environmental Quality, 32, 711–726.

    Article  CAS  Google Scholar 

  • Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7(3), 737–750.

    Google Scholar 

  • Wang, L., Ye, M., Rios, J. F., Fernandes, R., Lee, P. Z., & Hicks, R. W. (2013). Estimation of nitrate load from septic systems to surface water bodies using an ArcGIS-based software. Environmental Earth Sciences, 70(4), 1911–1926.

    Article  CAS  Google Scholar 

  • WestCo. (2008). SmartChem 200 Method 231N-0406C (Rev: July 2008). SM 4500-C1-E. WestCo Scientific Instruments, Inc.

  • WHO. (1999). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London: World Health Organization. E & EN Spon.

    Google Scholar 

  • Wilhelm, S. R., Schiff, S. L., & Robertson, W. D. (1996). Biogeochemical evolution of domestic waste water in septic systems: 2. Application of conceptual model in sandy aquifers. Groundwater, 34(5), 853–864.

    Article  CAS  Google Scholar 

  • Withers, P. J. A., Jordan, P., May, L., Jarvie, H. P., & Deal, N. (2014). Do septic tank systems pose a hidden threat to water quality? Frontiers in Ecology and the Environment, 12, 123–130.

    Article  Google Scholar 

  • WVDEP. (2014). Discharge measurements. West Virginia Department of Environmental Protection. Available at: http://www.dep.wv.gov/WWE/getinvolved/sos/Pages/SOPflow.aspx/ Cited 23 Aug 2014.

Download references

Acknowledgments

The authors would like to acknowledge the North Carolina Department of Environment and Natural Resources Water Quality 319 Non-Point Source Pollution Program grant for providing funding necessary to complete this research (Grant 3632). The following are thanked for providing logistical and material support during the project: Environmental Research Laboratory and field technicians at East Carolina University, Colleen Rochelle, Laura McKenna, Jim Watson, John Woods, Mary Hannah Postma, AJ Finley, Katie Supler Del Rosario, Jonathan Harris, Matthew Smith, and Sarah Hardison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Iverson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 67 kb)

ESM 2

(DOCX 109 kb)

ESM 3

(DOCX 73 kb)

ESM 4

(DOCX 723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iverson, G., O’Driscoll, M.A., Humphrey, C.P. et al. Wastewater Nitrogen Contributions to Coastal Plain Watersheds, NC, USA. Water Air Soil Pollut 226, 325 (2015). https://doi.org/10.1007/s11270-015-2574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2574-4

Keywords

Navigation