Skip to main content

Advertisement

Log in

Photocatalytic Decontamination of Airborne T2 Bacteriophage Viruses in a Small-Size TiO2/β-SiC Alveolar Foam LED Reactor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Light emitting diodes (LEDs) emitting at 392 nm were successfully used as an irradiation light source and associated to TiO2/β-SiC solid alveolar foams for designing a small-size, flow-through structured photocatalytic device for purifying air from airborne T2 bacteriophage viruses. Light emitting diodes are characterized by a high electricity-to-light yield, strength, a long lifetime, to ability to use a direct current power source, an almost-complete recycling rate, and a lack of mercury. Irrespective of the number of LEDs, we showed that the decontamination efficiency associated with removing airborne T2 bacteriophage viruses resulted from both the photocatalytic activity and the passive filtration effect of the TiO2/β-SiC solid alveolar foams. A high photocatalytic filtration efficiency was observed with 56 LEDs and a logarithmic abatement of 3 was achieved for 60 min of run time, with an apparent time constant of 11.0 min after correcting for the natural decay of the bioaerosol. The pure filtration effect corresponded to a logarithmic abatement of 1, with an apparent time constant of 43.1 min. The interest in using 56 LEDs vs. 40 LEDs was highlighted in terms of the logarithmic abatement as well as energy effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4

Similar content being viewed by others

References

  • Blake, D. M., Maness, P. C., Huang, Z., Wolfrum, E. J., Huang, J., & Jacoby, W. A. (1999). Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Separation and Purification Methods, 28, 1–50.

    Article  CAS  Google Scholar 

  • Bosc, F., Ayral, A., Keller, N., & Keller, V. (2007). Room temperature visible light oxidation of CO by high surface area rutile TiO2-supported metal photocatalyst. Applied Catalysis B: Environmental, 69, 133–137.

    Article  CAS  Google Scholar 

  • Chen, H. W., Ku, Y., & Irawan, A. (2007). Photodecomposition of o-cresol by UV-LED/TiO2 process with controlled periodic illumination. Chemosphere, 69, 184–190.

    Article  CAS  Google Scholar 

  • Cunningham, J., Al-Sayyed, G., & Srijaranai, S. (1994). Adsorption of model pollutants onto TiO2, particles in relation to photoremediation of contaminated water. In G. R. Helz, R. G. Zepp, & D. G. Crosby (Eds.), Aquatic and surface photochemistry (pp. 317–348). Boca Raton (FL): Lewis.

    Google Scholar 

  • Dai, S., Wu, Y., Sakai, T., Du, Z., Sakai, H., & Abe, M. (2010). Preparation of highly crystalline TiO2 nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton. Nanoscale Research Letters, 5, 1829–1835.

    Article  CAS  Google Scholar 

  • Doss, N., Bernhardt, P., Romero, T., Masson, R., Keller, V., & Keller, N. (2014). Photocatalytic degradation of butanone (methylethylketone) in a small-size TiO2/β-SiC alveolar foam LED reactor. Applied Catalysis B: Environmental, 154–155, 301–308.

    Article  Google Scholar 

  • U.S. EPA. Exposure Factors Handbook (1997, Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/P-95/002F a-c, 1997.

  • Ghosh, J. P., Langford, C. H., & Achari, G. (2008). Characterization of an LED based photoreactor to degrade 4-chlorophenol in an aqueous medium using coumarin (C-343) sensitized TiO2. The Journal of Physical Chemistry A, 112, 10310–10314.

    Article  CAS  Google Scholar 

  • Ghosh, J. P., Sui, R., Langford, C. H., Achari, G., & Berlinguette, C. P. (2009). A comparison of several nanoscale photocatalysts in the degradation of a common pollutant using LEDs and conventional UV light. Water Research, 43, 4499–4506.

    Article  CAS  Google Scholar 

  • Gogniat, G., Thyssen, M., Denis, M., Pulgarin, C., & Dukan, S. (2006). The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity. FEMS Microbiology Letters, 258(1), 18–24.

    Article  CAS  Google Scholar 

  • Goswami, D. Y., Trivedi, D. M., & Block, S. S. (1997). Photocatalytic disinfection of indoor air. Journal of Solar Energy Engineering, 119, 92–96.

    Article  CAS  Google Scholar 

  • Grinshpun, S. A., Adhikari, A., Honda, T., Kim, K. Y., Toivola, M., Rao, K. S. R., & Reponen, T. (2007). Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation. Environmental Science & Technology, 41, 606–612.

    Article  CAS  Google Scholar 

  • Herrmann, J.-M. (1999). Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53(1), 115–129.

    Article  CAS  Google Scholar 

  • Herrmann, J.-M. (2010). Fundamentals and misconceptions in photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 216(2–3), 85–93.

    Article  CAS  Google Scholar 

  • Huu, T. T., Lacroix, M., Pham Huu, C., Schweich, D., & Edouard, D. (2009). Towards a more realistic modeling of solid foam: use of the pentagonal dodecahedron geometry. Chemical Engineering Science, 64(24), 5131–5142.

    Article  CAS  Google Scholar 

  • Ishiguro, H., Yao, Y., Nakano, R., Hara, M., Sunada, K., Hashimoto, K., Kajioka, J., Fujishima, A., & Kubota, Y. (2013). Photocatalytic activity of Cu2+/TiO2-coated cordierite foam inactivates bacteriophages and Legionella pneumophila. Applied Catalysis B: Environmental, 129, 56–61.

    Article  CAS  Google Scholar 

  • Josset, S., Taranto, J., Keller, N., Keller, V., Lett, M.-C., & Bonnet, V. (2007). UV-A photocatalytic treatment of high flow rate air contaminated with Legionella pneumophila. Catalysis Today, 129, 215–222.

    Article  CAS  Google Scholar 

  • Josset, S., Keller, N., Lett, M.-C., Ledoux, M. J., & Keller, V. (2008). Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms. Chemical Society Reviews, 37, 744–755.

    Article  CAS  Google Scholar 

  • Josset, S., Hajiesmaili, S., Begin, D., Edouard, D., Pham-Huu, C., Lett, M. C., Keller, N., & Keller, V. (2010). UV-A photocatalytic treatment of Legionella pneumophila bacteria contaminated airflows through three-dimensional solid foam structured photocatalytic reactors. Journal of Hazardous Materials, 175(1–3), 372–381.

    Article  CAS  Google Scholar 

  • Kato, S., Hirano, Y., Iwata, M., Sano, T., Takeuchi, K., & Matsuzawa, S. (2005). Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide. Applied Catalysis B: Environmental, 57(2), 109–115.

    Article  CAS  Google Scholar 

  • Kavan, L., Grätzel, M., Gilbert, S. E., Klemenz, C., & Scheel, H. J. (1996). Electrochemical and photoelectrochemical investigation of single-crystal anatase. The Journal of American Chemical Society, 118(28), 6716–6723.

    Article  CAS  Google Scholar 

  • Keller, V., Keller, N., Ledoux, M. J., & Lett, M.-C. (2005). Biological agent inactivation in a flowing air stream by photocatalysis. Chemical Communications, 2918–2920.

  • Keller, N., Robert, V., & Keller, V. (2013). Immobilization of a semiconductor photocatalyst on solid supports: methods, materials and applications. In P. Pichat (Ed.), Photocatalysis and water purification: from fundamentals to recent applications (pp. 145–178). Weinheim: Wiley-VCH.

    Google Scholar 

  • Lapkin, A. A., Boddu, V. M., Aliev, G. N., Goller, B., Polisski, S., & Kovalev, D. (2008). Photo-oxidation by singlet oxygen generated on nanoporous silicon in a LED-powered reactor. Chemical Engineering Journal, 136(2–3), 331–336.

    Article  CAS  Google Scholar 

  • Liu, Y., Liu, J., Lin, Y., Zhang, Y., & Wei, Y. (2009). Simple fabrication and photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation. Ceramics International, 35, 3061–3065.

    Article  CAS  Google Scholar 

  • Masson, R., Keller, V., & Keller, N. (2015). β-SiC alveolar foams as a structured photocatalytic support for the gas phase photocatalytic degradation of methylethylketone. Applied Catalysis B: Environmental, 170-171, 301–311.

    Article  CAS  Google Scholar 

  • Matsunaga, T., Tomoda, R., Nakajima, T., & Wake, H. (1985). Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters, 29, 211–214.

  • Minero, C., Maurino, V., & Vione, D. (2013). Photocatalytic mechanisms and reaction pathways drawn from kinetic and probe molecules. In P. Pichat (Ed.), Photocatalysis and water purification : from fundamentals to recent applications (pp. 53–72). Weinheim: Wiley-VCH.

    Chapter  Google Scholar 

  • Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169–189.

    Article  CAS  Google Scholar 

  • Nguyen, P., & Pham, C. (2011). Innovative porous SiC-based materials: from nanoscopic understandings to tunable carriers serving catalytic needs. Applied Catalysis A: General, 391(1–2), 443–454.

    Article  CAS  Google Scholar 

  • Nishikawa, M., Sakamoto, H., & Nosaka, Y. (2012). Reinvestigation of the photocatalytic reaction mechanism for Pt-complex-modified TiO2 under visible light irradiation by means of ESR spectroscopy and chemiluminescence photometry. The Journal of Physical Chemistry A, 116, 9674–9679.

    Article  CAS  Google Scholar 

  • Ochiai, T., & Fujushima, A. (2012). Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(4), 247–262.

    Article  CAS  Google Scholar 

  • Ochuma, I. J., Osibo, O. O., Fishwick, R. P., Pollington, S., Wagland, A., Wood, J., & Winterbottom, J. M. (2007). Three-phase photocatalysis using suspended titania and titania supported on a reticulated foam monolith for water purification. Catalysis Today, 128, 100–107.

    Article  CAS  Google Scholar 

  • Ohtani, B. (2010). Photocatalysis A to Z—what we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157–178.

    Article  CAS  Google Scholar 

  • Ollis, D. F., Pichat, P., & Serpone, N. (2010). TiO2 photocatalysis-25 years. Applied Catalysis B: Environmental, 99(3–4), 377.

    Article  CAS  Google Scholar 

  • Pal, A., Pehkonen, S. O., Yu, L. E., & Ray, M. B. (2008). Photocatalytic inactivation of airborne bacteria in a continuous-flow reactor. Industrial and Engineering Chemistry Research, 47, 7580–7585.

    Article  CAS  Google Scholar 

  • Shie, J.L., & Pai, C.Y. (2010) Indoor and built environment. Photodegradation Kinetics of Toluene in Indoor Air at Different Humidities Using UVA, UVC and UVLED Light Sources in the Presence of Silver Titanium Dioxide, 19(5), 503–512.

  • Shie, J. L., Lee, C. H., Chiou, C. S., Chang, C. T., Chang, C. C., & Chang, C. Y. (2008). Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. Journal of Hazardous Materials, 155, 164–172.

    Article  CAS  Google Scholar 

  • Subagio, D. P., Srinivasan, M., Lim, M., & Lim, T. T. (2011). Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor. Applied Catalysis B: Environmental, 95(3–4), 414–422.

    Google Scholar 

  • Vohra, A., Goswami, D. Y., Deshpande, D. A., & Block, S. S. (2006). Enhanced photocatalytic disinfection of indoor air. Applied Catalysis B: Environmental, 64, 57–65.

    Article  CAS  Google Scholar 

  • Wang, W. Y., & Ku, Y. (2006). Photocatalytic degradation of Reactive Red 22 in aqueous solution by UV-LED radiation. Water Research, 40, 2249–2258.

    Article  CAS  Google Scholar 

  • WHO (2007). Fact Sheet No. 104; World Health Organization: Geneva.

  • Yao, Y., Ochiai, T., Ishiguro, H., Nakano, R., & Kubota, Y. (2011). Antibacterial performance of a novel photocatalytic-coated cordierite foam for use in air cleaners. Applied Catalysis B: Environmental, 106(3–4), 592–599.

    Article  CAS  Google Scholar 

  • Yu, K.-P., Lee, G. W.-M., Lin, S.-Y., & Huang, C. P. (2008). Removal of bioaerosols by the combination of a photocatalytic filter and negative air ions. Journal of Aerosol Science, 39, 377–392.

    Article  CAS  Google Scholar 

  • Yu, H., Irie, H., Shimodaira, Y., Hosogi, Y., Kuroda, Y., Miyauchi, M., & Hashimoto, K. (2010). An efficient visible-light-sensitive Fe(III)-grafted TiO2 photocatalyst. The Journal of Physical Chemistry C, 114(39), 16481–16487.

    Article  CAS  Google Scholar 

  • Yuan, J., Hu, H., Chen, M., Shi, J., & Shangguan, W. (2008). Promotion effect of Al2O3–SiO2 interlayer and Pt loading on TiO2/nickel-foam photocatalyst for degrading gaseous acetaldehyde. Catalysis Today, 139(1–2), 140–145.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to DGA (Direction Générale de l’Armement) and Alsace regional council for financially supporting this work in the frame of the PhD grant of G. Carré. Prof. M.-C. Lett is deeply thanked for her participation to this study. Drs. C. Pham and P. Nguyen from SICAT Catalyst are thanked for providing β-SiC alveolar foams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Keller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doss, N., Carré, G., Keller, V. et al. Photocatalytic Decontamination of Airborne T2 Bacteriophage Viruses in a Small-Size TiO2/β-SiC Alveolar Foam LED Reactor. Water Air Soil Pollut 229, 29 (2018). https://doi.org/10.1007/s11270-017-3676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3676-y

Keywords

Navigation