Skip to main content
Log in

Evaluation of the Cr(VI) Adsorption Performance of Xanthate Polysaccharides Supported onto Agave Fiber-LDPE Foamed Composites

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, hexavalent chromium adsorption onto LDPE and agave fiber composites coated with chitosan or cellulose was studied in batch experiments. Chemical modifications consisting in cross-linked chitosan, cross-linked chitosan xanthate, and cellulose xanthate were applied to the polysaccharide-coated sorbents in order to increase their stability and adsorption capacity. The sorbents were characterized in terms of morphology by scanning electron microscopy and their chemical composition was evaluated by infrared and nuclear magnetic resonance spectroscopies. The results showed that the adsorption kinetics followed the pseudo-second-order model in all cases (i.e., chemisorption as the rate-limiting step of the adsorption reaction). Moreover, the isotherms evidenced a monolayer adsorption on homogeneous sites described by the Langmuir model. The maximum adsorption capacity of 284.7 mg Cr(VI)/g was obtained for the cross-linked chitosan xanthate sorbent at pH 4 which represents an increase of 43% against the chitosan-coated sorbent (199.1 mg Cr(VI)/g). Besides, functionalized cellulose sorbent also increased its capacity from 84.5 to 106.0 mg Cr(VI)/g cellulose due to the xanthate group. Up to six adsorption-desorption cycles were completed for the case of functionalized chitosan sorbent, confirming that the stability was increased with the cross-linking and the material could be reused several times without losing its adsorption capacity. In the case of cellulose xanthate, only three adsorption cycles were completed. However, improvements were observed in the desorption capacity considering that it decreased below 20% after two cycles in the cellulose-coated sorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Afroze, S., & Sen, T. K. (2018). A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water, Air & Soil Pollution, 229(225), 1–50.

    CAS  Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2004). Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54(7), 951–967.

    Article  CAS  Google Scholar 

  • Boddu, V. M., Abburi, K., Talbott, J. L., & Smith, E. D. (2003). Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environmental Science & Technology, 37(19), 4449–4456.

    Article  CAS  Google Scholar 

  • Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Argüelles-Monal, W., Desbrieres, J., & Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42(8), 3569–3580.

    Article  CAS  Google Scholar 

  • Caner, N., Sarı, A., & Tüzen, M. (2015). Adsorption characteristics of mercury (II) ions from aqueous solution onto chitosan-coated diatomite. Industrial & Engineering Chemistry Research, 54(30), 7524–7533.

    Article  CAS  Google Scholar 

  • Dambies, L., Guimon, C., Yiacoumi, S., & Guibal, E. (2001). Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177, 203–214.

    Article  CAS  Google Scholar 

  • Debnath, S., Maity, A., & Pillay, K. (2014). Magnetic chitosan–GO nanocomposite: Synthesis, characterization and batch adsorber design for Cr (VI) removal. Journal of Environmental Chemical Engineering, 2(2), 963–973.

    Article  CAS  Google Scholar 

  • Deng, Y., Kano, N., & Imaizumi, H. (2017). Adsorption of Cr(VI) onto hybrid membrane of carboxymethyl chitosan and silicon dioxide. Journal of Chemistry, 2017(3426923), 1–8.

    Article  CAS  Google Scholar 

  • El-Reash, Y. G., Otto, M., Kenawy, I. M., & Ouf, A. M. (2011). Adsorption of Cr(VI) and as(V) ions by modified magnetic chitosan chelating resin. International Journal of Biological Macromolecules, 49(4), 513–522.

    Article  CAS  Google Scholar 

  • Elwakeel, K. Z. (2010). Removal of Cr (VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desalination, 250(1), 105–112.

    Article  CAS  Google Scholar 

  • Fernández-Pazos, M. T., Garrido-Rodriguez, B., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Fernández-Sanjurjo, M. J., Núñez-Delgado, A., et al. (2013). Cr(VI) adsorption and desorption on soils and biosorbents. Water, Air & Soil Pollution, 224, 1366, 1–1366,12.

    Article  CAS  Google Scholar 

  • García-Sánchez, M. E., Pérez-Fonseca, A. A., Gómez, C., González-Reynoso, O., Vázquez-Lepe, M. O., González-Núñez, R., et al. (2017). Improvement of Pb (II) adsorption capacity by controlled alkali treatment to chitosan supported onto agave fiber-HDPE composites. Macromolecular Symposia, 374(1), 1600104.

    Article  CAS  Google Scholar 

  • Habiba, U., Afifi, A. M., Salleh, A., & Ang, B. C. (2017). Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. Journal of Hazardous Materials, 322, 182–194.

    Article  CAS  Google Scholar 

  • Heidari, A., Younesi, H., Mehraban, Z., & Heikkinen, H. (2013). Selective adsorption of Pb (II), Cd (II), and Ni (II) ions from aqueous solution using chitosan–MAA nanoparticles. International Journal of Biological Macromolecules, 61, 251–263.

    Article  CAS  Google Scholar 

  • Hirano, S., Usutani, A., & Midorikawa, T. (1997). Novel fibers of N-acylchitosan and its cellulose composite prepared by spinning their aqueous xanthate solutions. Carbohydrate Polymers, 33(1), 1–4.

    Article  CAS  Google Scholar 

  • Huang, G., Zhang, H., Shi, J. X., & Langrish, T. A. (2009). Adsorption of chromium (VI) from aqueous solutions using cross-linked magnetic chitosan beads. Industrial & Engineering Chemistry Research, 48(5), 2646–2651.

    Article  CAS  Google Scholar 

  • Kalantari, K., Ahmad, M. B., Masoumi, H. R. F., Shameli, K., Basri, M., & Khandanlou, R. (2015). Rapid and high capacity adsorption of heavy metals by Fe3O4/montmorillonite nanocomposite using response surface methodology: Preparation, characterization, optimization, equilibrium isotherms, and adsorption kinetics study. Journal of the Taiwan Institute of Chemical Engineers, 49(4), 192–198.

    Article  CAS  Google Scholar 

  • Kasaai, M. R. (2010). Determination of the degree of N-acetylation for chitin and chitosan by various NMR spectroscopy techniques: a review. Carbohydrate Polymers, 79(4), 801–810.

    Article  CAS  Google Scholar 

  • Kavaklı, C., Barsbay, M., Tilki, S., Güven, O., & Kavaklı, P. A. (2016). Activation of polyethylene/polypropylene nonwoven fabric by radiation-induced grafting for the removal of Cr(VI) from aqueous solutions. Water, Air & Soil Pollution, 227, 473, 1–473,16.

    Article  CAS  Google Scholar 

  • Klapiszewski, Ł., Bartczak, P., Wysokowski, M., Jankowska, M., Kabat, K., & Jesionowski, T. (2015). Silica conjugated with Kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal. Chemical Engineering Journal, 260, 684–693.

    Article  CAS  Google Scholar 

  • Kulkarni, P. S., Deshmukh, P. G., Jakhade, A. P., Kulkarni, S. D., & Chikate, R. C. (2017). 1,5 diphenylcarbazide immobilized cross-linked chitosan films: an integrated approach towards enhanced removal of Cr (VI). Journal of Molecular Liquids, 247, 254–261.

    Article  CAS  Google Scholar 

  • Kumar, A. S. K., Gupta, T., Kakan, S. S., Kalidhasan, S., Rajesh, V., & Rajesh, N. (2012). Effective adsorption of hexavalent chromium through a three center (3c) co-operative interaction with an ionic liquid and biopolymer. Journal of Hazardous Materials, 239-240, 213–224.

    Article  CAS  Google Scholar 

  • Lin, H., Han, S., Dong, Y., Ling, W., & He, Y. (2018). Structural characteristics and functional properties of corncob modified by hyperbranched polyamide for the adsorption of Cr (VI). Water, Air & Soil Pollution, 229, 117, 1–117,12.

    Google Scholar 

  • McCormick, C. L., Callais, P. A., & Hutchinson, B. H., Jr. (1985). Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules, 18(12), 2394–2401.

    Article  CAS  Google Scholar 

  • Mirabedini, M., Kassaee, M. Z., & Poorsadeghi, S. (2017). Novel magnetic chitosan hydrogel film, cross-linked with glyoxal as an efficient adsorbent for removal of toxic Cr(VI) from water. Arabian Journal for Science and Engineering, 45(1), 115–124.

    Article  CAS  Google Scholar 

  • Miretzky, P., & Cirelli, A. F. (2010). Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. Journal of Hazardous Materials, 180(1–3), 1–19.

    Article  CAS  Google Scholar 

  • Ngah, W. W., Ab Ghani, S., & Kamari, A. (2005). Adsorption behaviour of Fe (II) and Fe (III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 96(4), 443–450.

    Article  CAS  Google Scholar 

  • Nguyen, T. C., Loganathan, P., Nguyen, T. V., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2015). Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chemical Engineering Journal, 270, 393–404.

    Article  CAS  Google Scholar 

  • Pang, L. J., Li, R., Gao, Q. H., Hu, J. T., Xing, Z., Zhang, M. X., et al. (2016). Functionalized and reusable polyethylene fibres for Au (III) extraction from aqueous solution with high adsorption capacity and selectivity. RSC Advances, 6, 87221–87229.

    Article  CAS  Google Scholar 

  • Park, D., Lim, S. R., Yun, Y. S., & Park, J. M. (2008). Development of a new Cr (VI)-biosorbent from agricultural biowaste. Bioresource Technology, 99(18), 8810–8818.

    Article  CAS  Google Scholar 

  • Pérez-Fonseca, A. A., Gómez, C., Dávila, H., González-Núnez, R., Robledo-Ortíz, J. R., Vázquez-Lepe, M. O., et al. (2011). Chitosan supported onto agave fiber—postconsumer HDPE composites for Cr (VI) adsorption. Industrial & Engineering Chemistry Research, 51(17), 5939–5946.

    Article  CAS  Google Scholar 

  • Putro, J. N., Santoso, S. P., Ismadji, S., & Ju, Y. H. (2017). Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: improvement on extended. Langmuir isotherm model. Microporous and Mesoporous Materials, 246(7), 166–177.

    Article  CAS  Google Scholar 

  • Rojas, G., Silva, J., Flores, J. A., Rodriguez, A., Ly, M., & Maldonado, H. (2005). Adsorption of chromium onto cross-linked chitosan. Separation and Purification Technology, 44(1), 31–36.

    Article  CAS  Google Scholar 

  • Sağ, Y., & Aktay, Y. (2002). Kinetic studies on sorption of Cr (VI) and Cu (II) ions by chitin, chitosan and Rhizopus arrhizus. Biochemical Engineering Journal, 12(2), 143–153.

    Article  Google Scholar 

  • Saleh, T. A. (2015). Isotherm, kinetic, and thermodynamic studies on Hg (II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environmental Science and Pollution Research, 22(21), 16721–16731.

    Article  CAS  Google Scholar 

  • Sankararamakrishnan, N., Dixit, A., Iyengar, L., & Sanghi, R. (2006). Removal of hexavalent chromium using a novel cross linked xanthated chitosan. Bioresource Technology, 97(18), 2377–2382.

    Article  CAS  Google Scholar 

  • Schmuhl, R., Krieg, H. M., & Keizer, K. (2001). Adsorption of cu (II) and Cr (VI) ions by chitosan: Kinetics and equilibrium studies. Water SA, 27(1), 1–7.

    CAS  Google Scholar 

  • Soltani, R. D. C., Khorramabadi, G. S., Khataee, A. R., & Jorfi, S. (2014). Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 973–980.

    Article  CAS  Google Scholar 

  • Spinelli, V. A., Laranjeira, M. C., & Fávere, V. T. (2004). Preparation and characterization of quaternary chitosan salt: adsorption equilibrium of chromium (VI) ion. Reactive and Functional Polymers, 61(3), 347–352.

    Article  CAS  Google Scholar 

  • Sun, X., Yang, L., Li, Q., Zhao, J., Li, X., Wang, X., et al. (2014). Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr (VI): synthesis and adsorption studies. Chemical Engineering Journal, 241, 175–183.

    Article  CAS  Google Scholar 

  • Tingaut, P., Hauert, R., & Zimmermann, T. (2011). Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry. Journal of Materials Chemistry, 21(40), 16066–16076.

    Article  CAS  Google Scholar 

  • Unuabonah, E. I., Olu-Owolabi, B. I., & Adebowale, K. O. (2016). Competitive adsorption of metal ions onto goethite–humic acid-modified kaolinite clay. International journal of Environmental Science and Technology, 13(4), 1043–1054.

    Article  CAS  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–60.

    Google Scholar 

  • Wu, Z., Li, S., Wan, J., & Wang, Y. (2012). Cr (VI) adsorption on an improved synthesized cross-linked chitosan resin. Journal of Molecular Liquids., 170, 25–29.

    Article  CAS  Google Scholar 

  • Xu, X., Gao, B. Y., Tang, X., Yue, Q. Y., Zhong, Q. Q., & Li, Q. (2011). Characteristics of cellulosic amine-crosslinked copolymer and its sorption properties for Cr (VI) from aqueous solutions. Journal of Hazardous Materials, 189(1), 420–426.

    Article  CAS  Google Scholar 

  • Yakout, A. A., El-Sokkary, R. H., Shreadah, M. A., & Hamid, O. G. A. (2016). Removal of Cd (II) and Pb (II) from wastewater by using triethylenetetramine functionalized grafted cellulose acetate-manganese dioxide composite. Carbohydrate Polymers, 148, 406–414.

    Article  CAS  Google Scholar 

  • Yang, R., Aubrecht, K. B., Ma, H., Wang, R., Grubbs, R. B., Hsiao, B. S., et al. (2015). Thiol-modified cellulose nanofibrous composite membranes for chromium (VI) and lead (II) adsorption. Polymer, 55(5), 1167–1176.

    Article  CAS  Google Scholar 

  • Yu, J. X., Wang, L. Y., Chi, R. A., Zhang, Y. F., Xu, Z. G., & Guo, J. (2015). Adsorption of Pb 2+, Cd 2+, Cu 2+, and Zn 2+ from aqueous solution by modified sugarcane bagasse. Research on Chemical Intermediates, 41(3), 1525–1541.

    Article  CAS  Google Scholar 

  • Zhang, L., Xia, W., Liu, X., & Zhang, W. (2015). Synthesis of titanium cross-linked chitosan composite for efficient adsorption and detoxification of hexavalent chromium from water. Journal of Materials Chemistry A, 3, 331–340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge R. Robledo-Ortíz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-López, A.Y., González-López, M.E., Manríquez-González, R. et al. Evaluation of the Cr(VI) Adsorption Performance of Xanthate Polysaccharides Supported onto Agave Fiber-LDPE Foamed Composites. Water Air Soil Pollut 230, 133 (2019). https://doi.org/10.1007/s11270-019-4181-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4181-2

Keywords

Navigation