Skip to main content
Log in

Influence of Soil Organic Carbon, Water Holding Capacity, and Moisture Content on Heavy Metals in Rice Paddy Soils of Western Ghats of India

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Analysis of soil samples collected from 16 rice paddy fields located in the Western Ghats region was performed to quantify the concentration of Cu, Zn, Mn, Fe, Ni, Cr, Cd, and Pb using atomic absorption spectroscopy. High concentrations of these heavy metals were found in rice paddy fields regularly cultivated using agrochemicals. We compared this concentration with soils of rice paddy field that was not under cultivation. Cu, Zn, Mn, Fe, Cr, Ni, Pb, and Cd showed increases of 1.2, 1.3, 2.3, 2.2, 1.8, 2.8, 1.8, and 8.5 times, respectively, in the rice paddy fields cultivated with synthetic fertilizers such as NPK, urea, potash, diammonium phosphate, etc., and several categories of pesticides belonging to the class organophosphates, carbamates, and acetanilide herbicide. In contaminated sites, the heavy metals exhibited maximum correlation with soil moisture content (SMC) (Zn, Fe, Cr, Ni, and Cd), soil organic content (SOC) (Fe, Cr, Ni, and Cd), and water holding capacity (WHC) (Cu, Pb, and Cd) than those observed for the reference site. The principal component analysis (PCA) revealed a total of 77.944% variance of heavy metals contributed from WHC (40.259%), SMC (20.854%), and SOC (16.832%). This indicates the build-up of heavy metals in rice paddy soils under the strong influence of moisture content, water holding capacity, and organic carbon content of the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019. https://doi.org/10.1155/2019/6730305

  • Allen, S. E. (Ed.). (1989). Chemical analysis of ecological materials. Blackwell Scientific Publications.

    Google Scholar 

  • Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (3rd ed.). Springer Science+Business Media.

    Book  Google Scholar 

  • Ashaiekh, M. A., Eltayeb, M. A., Ali, A. H., Ebrahim, A. M., Salih, I., & Idris, A. M. (2019). Spatial distribution of total and bioavailable heavy metal contents in soil from agricultural, residential, and industrial areas in Sudan. Toxin Reviews, 38(2), 93–105. https://doi.org/10.1080/15569543.2017.1419491

    Article  Google Scholar 

  • Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., & Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160(1), 83–89. https://doi.org/10.1007/s10661-008-0659-x

    Article  CAS  Google Scholar 

  • Bai, L. Y., Zeng, X. B., Li, L. F., Chang, P. E. N., & Li, S. H. (2010). Effects of land use on heavy metal accumulation in soils and sources analysis. Agricultural Sciences in China, 9(11), 1650–1658. https://doi.org/10.1016/S1671-2927(09)60262-5

    Article  CAS  Google Scholar 

  • Bhatti, S. S., Kumar, V., Singh, N., Sambyal, V., Singh, J., Katnoria, J. K., & Nagpal, A. K. (2016). Physico-chemical properties and heavy metal contents of soils and kharif crops of Punjab, India. Procedia Environmental Sciences, 35, 801–808. https://doi.org/10.1016/j.proenv.2016.07.096

    Article  CAS  Google Scholar 

  • Chabukdhara, M., Munjal, A., Nema, A. K., Gupta, S. K., & Kaushal, R. K. (2016). Heavy metal contamination in vegetables grown around peri-urban and urban-industrial clusters in Ghaziabad, India. Human and Ecological Risk Assessment: An International Journal, 22(3), 736–752. https://doi.org/10.1080/10807039.2015.1105723

    Article  CAS  Google Scholar 

  • Daripa, A., Chattaraj, S., Malav, L., Ray, P., Sharma, R., Mohekar, D. S., Raghuvamshi, M. S., & Patil, N. G. (2022). Risk assessment of agricultural soils surrounding an iron ore mine: A field study from Western Ghat of Goa, India. Soil and Sediment Contamination: An International Journal. https://doi.org/10.1080/15320383.2022.2111403

    Article  Google Scholar 

  • Dhaliwal, S. S., Setia, R., Kumar, V., Ghosh, T., Taneja, S., Singh, R., ... & Pateriya, B. (2021). Assessment of seasonal variations and human health risks due to heavy metals in water, soils and food crops using multi-indices approach. Environmental Earth Sciences, 80(11), 1–11. https://doi.org/10.1007/s12665-021-09686-4

  • Du, J., Wang, Z., Liu, J., Zhong, S., & Wei, C. (2020). Distribution characteristics of soil heavy metals, their source identification and their changes influenced by anthropogenic cultivation activities in Purple Hilly Regions of Sichuan Basin, China. Journal of Soil Science and Plant Nutrition, 20(3), 1080–1091. https://doi.org/10.1007/s42729-020-00194-1

    Article  CAS  Google Scholar 

  • Dube, A., Zbytniewski, R., Kowalkowski, T., Cukrowska, E., & Buszewski, B. (2001). Adsorption and migration of heavy metals in soil. Polish Journal of Environmental Studies, 10(1), 1–10.

    CAS  Google Scholar 

  • Giri, S., Singh, A. K., & Mahato, M. K. (2017). Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India. Journal of Earth System Science, 126(4), 1–13. https://doi.org/10.1007/s12040-017-0833-z

    Article  CAS  Google Scholar 

  • Guo, X., Zhang, S., Shan, X. Q., Luo, L. E. I., Pei, Z., Zhu, Y. G., ... & Gault, A. (2006). Characterization of Pb, Cu, and Cd adsorption on particulate organic matter in soil. Environmental Toxicology and Chemistry: An International Journal, 25(9), 2366–2373. https://doi.org/10.1897/05-636R.1

  • Hégberger, K., & Škrbić, B. (2012). Ranking and similarity for quantitative structure – retention relationship models in predicting Lee retention indices of polycyclic aromatic hydrocarbons. Analytica Chimica Acta, 716(2012), 92–100. https://doi.org/10.1016/j.aca.2011.11.061

    Article  CAS  Google Scholar 

  • Hoshmand, R. A. (2006). Design of experiments for agriculture and the natural sciences. CRC Press.

    Google Scholar 

  • Huang, T., Deng, Y., Zhang, X., Wu, D., Wang, X., & Huang, S. (2021). Distribution, source identification, and health risk assessment of heavy metals in the soil-rice system of a farmland protection area in Hubei Province, Central China. Environmental Science and Pollution Research, 28(48), 68897–68908. https://doi.org/10.1007/s11356-021-15213-6

    Article  CAS  Google Scholar 

  • Kumar, A., & Maiti, S. K. (2015). Assessment of potentially toxic heavy metal contamination in agricultural fields, sediment, and water from an abandoned chromite-asbestos mine waste of Roro hill, Chaibasa, India. Environmental Earth Sciences, 74(3), 2617–2633. https://doi.org/10.1007/s12665-015-4282-1

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–A review. Waste Management, 28(1), 215–225. https://doi.org/10.1016/j.wasman.2006.12.012

    Article  CAS  Google Scholar 

  • Kuppusamy, S., Yoon, Y. E., Kim, S. Y., Kim, J. H., Kim, H. T., & Lee, Y. B. (2018). Does long-term application of fertilizers enhance the micronutrient density in soil and crop? Evidence from a field trial conducted on a 47-year-old rice paddy. Journal of Soils and Sediments, 18(1), 49–62. https://doi.org/10.1007/s11368-017-1743-z

    Article  CAS  Google Scholar 

  • Lair, G. J., Gerzabek, M. H., & Haberhauer, G. (2007). Sorption of heavy metals on organic and inorganic soil constituents. Environmental Chemistry Letters, 5(1), 23–27. https://doi.org/10.1007/s10311-006-0059-9

    Article  CAS  Google Scholar 

  • Lambert, R., Grant, C., & Sauvé, S. (2007). Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers. Science of the Total Environment, 378(3), 293–305. https://doi.org/10.1016/j.scitotenv.2007.02.008

    Article  CAS  Google Scholar 

  • Liu, W. X., Shen, L. F., Liu, J. W., Wang, Y. W., & Li, S. R. (2007). Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology, 79(2), 209–213. https://doi.org/10.1007/s00128-007-9164-0

    Article  CAS  Google Scholar 

  • Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388. https://doi.org/10.1016/j.envres.2017.01.021

    Article  CAS  Google Scholar 

  • Mishra, V. K., Upadhyay, A. R., & Tripathi, B. D. (2009). Bioaccumulation of heavy metals and two organochlorine pesticides (DDT and BHC) in crops irrigated with secondary treated waste water. Environmental Monitoring and Assessment, 156(1), 99–107. https://doi.org/10.1007/s10661-008-0466-4

    Article  CAS  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In: Sparks, D.L., Page, A.L., Helmke, P.K., et al. (Eds.), Methods of soil analysis: Part 3 Chemical methods, 5, (pp 961–1010). Soil Science Society of America, Inc. Wisconsin https://doi.org/10.2136/sssabookser5.3.c34

  • Reddy, M. V., Satpathy, D., & Dhiviya, K. S. (2013). Assessment of heavy metals (Cd and Pb) and micronutrients (Cu, Mn, and Zn) of paddy (Oryza sativa L.) field surface soil and water in a predominantly paddy-cultivated area at Puducherry (Pondicherry, India), and effects of the agricultural runoff on the elemental concentrations of a receiving rivulet. Environmental Monitoring and Assessment, 185(8), 6693–6704. https://doi.org/10.1007/s10661-012-3057-3

    Article  CAS  Google Scholar 

  • Rodríguez-Vila, A., Covelo, E. F., Forján, R., & Asensio, V. (2014). Phytoremediating a copper mine soil with Brassica juncea L., compost and biochar. Environmental Science and Pollution Research, 21(19), 11293–11304. https://doi.org/10.1007/s11356-014-2993-6

    Article  CAS  Google Scholar 

  • Rutkowska, B., Szulc, W., Sosulski, T., & Stępień, W. (2014). Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications. Plant, Soil and Environment, 60(5), 198–203. https://doi.org/10.17221/914/2013-PSE

    Article  CAS  Google Scholar 

  • Salem, M. A., Bedade, D. K., Al-Ethawi, L., & Al-Waleed, S. M. (2020). Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon, 6(10), e05224. https://doi.org/10.1016/j.heliyon.2020.e05224

    Article  CAS  Google Scholar 

  • Satpathy, D., Reddy, M. V., & Dhal, S. P. (2014). Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East Coast of India. BioMed Research International, 2014. https://doi.org/10.1155/2014/545473

  • Shan, Y., Tysklind, N., Hao, F., Ouyang, W., Chen, S., & Lin, C. (2013). Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. Journal of Soil Science & Sediments, 13, 720–729. https://doi.org/10.1007/s11368-012-0637-3

    Article  CAS  Google Scholar 

  • Sharma, S., Nagpal, A. K., & Kaur, I. (2018). Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India, and its environs. Food Chemistry, 255, 15–22. https://doi.org/10.1016/j.foodchem.2018.02.037

    Article  CAS  Google Scholar 

  • Škrbić, B., & Miljević, N. (2002). An evaluation of residues at an oil refinery site following fires. Journal of Environmental Science and Health, Part A, 37(6), 1029–1039.

    Article  Google Scholar 

  • Škrbić, B. D., Živančev, J., Antić, I., & Buljovčić, M. (2021). Pollution status and health risk caused by heavy elements in the flooded soil and vegetables from typical agricultural region in Vojvodina Province, Serbia. Environmental Science and Pollution Research, 28(13), 16065–16080. https://doi.org/10.1007/s11356-020-11794-w

    Article  CAS  Google Scholar 

  • Škrbić, B., Đurišić-Mladenović, N., & Cvejanov, J. (2005). Principal component analysis of trace elements in Serbian wheat. Journal of Agricultural and Food Chemistry, 53(6), 2171–2175. https://doi.org/10.1021/jf0402577

    Article  CAS  Google Scholar 

  • Škrbić, B., Szyrwińska, K., Đurišić-Mladenović, N., Nowicki, P., & Lulek, J. (2010). Principal component analysis of indicator PCB profiles in breast milk from Poland. Environment International, 36(8), 862–872. https://doi.org/10.1016/j.envint.2009.04.008

    Article  CAS  Google Scholar 

  • Song, T., Su, X., He, J., Liang, Y., & Zhou, T. (2018). Source apportionment and health risk assessment of heavy metals in agricultural soils in Xinglonggang, Northeastern China. Human and Ecological Risk Assessment: An International Journal, 24(2), 509–521. https://doi.org/10.1080/10807039.2017.1392232

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency). (1996). Method 3050B: Acid digestion of sediments, sludges, and soils. Revision 2. Washington, D,C.

  • Vasudhevan, P., Manikandan, E., Jonathan, M. P., Sivasankar, P., & Thangavel, P. (2022). Pollution assessment and source apportionment of metals in paddy field of Salem, South India. Environmental Earth Sciences, 81(6), 1–15. https://doi.org/10.1007/s12665-022-10304-0

    Article  CAS  Google Scholar 

  • Wang, F., Zhang, S., Cheng, P., Zhang, S., & Sun, Y. (2020). Effects of soil amendments on heavy metal immobilization and accumulation by maize grown in a multiple-metal-contaminated soil and their potential for safe crop production. Toxics, 8(4), 102. https://doi.org/10.3390/toxics8040102

    Article  CAS  Google Scholar 

  • Wijesekara, H., Bolan, N. S., Thangavel, R., Seshadri, B., Surapaneni, A., Saint, C., Hetherington, C., Mathew, P., & Vithange, M. (2017). The impact of biosolid application on the organic carbon and carbon dioxide fluxes in soil. Chemosphere, 189, 565–573. https://doi.org/10.1016/j.chemosphere.2017.09.090

    Article  CAS  Google Scholar 

  • Witt, C., & Haefele, S. M. (2005). Paddy soils. Encyclopedia of Soils in the Environment, 141–150. https://doi.org/10.1016/b0-12-348530-4/00286-1

  • Wu, Y. (2017). Periphyton: A promising bio-organic fertilizer source in agriculture ecosystem. In Wu, Y. (Eds.), Periphyton, Function and Application in Environmental Remediation. (pp 225–249) Elsevier. https://doi.org/10.1016/B978-0-12-801077-8.00009-0

  • Yadav, P., Singh, B., Garg, V. K., Mor, S., & Pulhani, V. (2017). Bioaccumulation and health risks of heavy metals associated with consumption of rice grains from croplands in Northern India. Human and Ecological Risk Assessment: An International Journal, 23(1), 14–27. https://doi.org/10.1080/10807039.2016.1218750

    Article  CAS  Google Scholar 

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91. https://doi.org/10.1016/j.envpol.2010.09.019

    Article  CAS  Google Scholar 

  • Zeng, G., Wan, J., Huang, D., Hu, L., Huang, C., Cheng, M., Xue, W., Gong, X., Wang, R., & Jiang, D. (2017). Precipitation, adsorption and rhizosphere effect: The mechanisms for phosphate-induced Pb immobilization in soils—A review. Journal of Hazardous Materials, 339, 354–367. https://doi.org/10.1016/j.jhazmat.2017.05.038

    Article  CAS  Google Scholar 

  • Zhang, Z., Wu, X., Tu, C., Huang, X., Zhang, J., Fang, H., Huo, H., & Lin, C. (2020). Relationships between soil properties and the accumulation of heavy metals in different Brassica campestris L. growth stages in a Karst mountainous area. Ecotoxicology and Environmental Safety, 206, 111150. https://doi.org/10.1016/j.ecoenv.2020.111150

    Article  CAS  Google Scholar 

  • Zhao, K., Liu, X., Xu, J., & Selim, H. M. (2010). Heavy metal contaminations in a soil–rice system: Identification of spatial dependence in relation to soil properties of paddy fields. Journal of Hazardous Materials, 181(1–3), 778–787. https://doi.org/10.1016/j.jhazmat.2010.05.081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out as a part of Ph.D programme of Ranjana Ramesha Hegade. She is thankful to Kuvempu University for the Scholarship (No. KU: BCM-3/2019-20/109, dt 09-07-2019). The authors are thankful to the farmers who permitted to visit their cropland and to collect the soil samples during the study. The authors are also thankful to two anonymous reviewers whose suggestions and comments have improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Field work, data collection, formal analysis, investigation, and writing the draft were performed by Ranjana R. H. Field work, formal analysis, investigation, review, and editing were performed by M. V. Chethana Kumara. Conceptualization, methodology, software, validation, formal analysis, resources, data curation, review and editing, visualization, and supervision were performed by S. V. Krishnamurthy. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sannanegunda Venkatarama Bhatta Krishnamurthy.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegade, R.R., Chethanakumara, M.V. & Krishnamurthy, S.V.B. Influence of Soil Organic Carbon, Water Holding Capacity, and Moisture Content on Heavy Metals in Rice Paddy Soils of Western Ghats of India. Water Air Soil Pollut 234, 192 (2023). https://doi.org/10.1007/s11270-023-06186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06186-y

Keywords

Navigation