Skip to main content

Advertisement

Log in

Opportunistic Content Sharing Scheme for Distributed Network in City Environments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposes a novel adaptive cellular automaton co-occurrence (CACO) approach to forming information societies in smart cities. It develops an interest ontology of cellular automaton (CA) clustering using a zone of community in an urban environment. The key to the proposed method is to integrate CA clustering with the ontology of user interests. We also adopt an interest ontology and a co-occurrence mechanism to calculate the relation between time and the popularity of the information. In addition, we take advantage of the pheromone mechanism to determine if the data transferred to the destination are popular and to analyze if there exists any duplication. The simulation results reveal the strengths of the proposed “adaptive CACO mechanism” model in terms of decreased delay rate, next hop probability, and service time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Conti, M., Giordano, S., May, M., & Passarella, A. (2010). From opportunistic networks to opportunistic computing. IEEE Communications Magazine, 48(9), 126–139.

    Article  Google Scholar 

  2. Pelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine, 44(11), 134–141.

    Article  Google Scholar 

  3. Haitao, L., Baoxian, Z., Mouftah, H., Xiaojun, S., & Jian, M. (2009). Opportunistic routing for wireless ad hoc and sensor networks: Present and future directions. IEEE Communications Magazine, 47(12), 103–109.

  4. Conti, M., Delmastro, F., & Passarella, A. (2009). Social-aware content sharing in opportunistic networks. 6th Annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks workshops, pp. 1–3.

  5. Karamshuk, D., Boldrini, C., Conti, M., & Passarella, A. (2011). Human mobility models for opportunistic networks. IEEE Communications Magazine, 49(12), 157–165.

    Article  Google Scholar 

  6. Perkins, C. E. (2001). Ad Hoc networking. New Jersey: Addison-Wesley.

  7. Fall, K. (2003). A delay-tolerant network architecture for challenged internets. Proceedings of the ACM SIGCOMM’03.

  8. Musolesi, M., & Mascolo, C. (2009). CAR: Context-aware adaptive routing for delay-tolerant mobile networks. IEEE Transactions on Mobile Computing, 8(2), 246–260.

  9. Jain, S., Fall, K., & Patra, R. (2004). Routing in a delay tolerant network. Proceedings of the ACM SIGCOMM’04.

  10. Zhao, V., Ammar, M., & Zegura, E. (2004). A message ferrying approach for data delivery in sparse mobile ad hoc networks. Proceedings of the ACM MobiHoc’04.

  11. Sarafijanovic-Djukic, M. P. N., & Grossglauser, M. (2006). Island hopping: Efficient mobility assisted forwarding in partitioned networks. Proceedings of the 3rd annual IEEE conference sensor and ad hoc communications and networks (SECON’06).

  12. Boldrini, C., Conti, M., & Passarella, A. (2008). Exploiting users’ social relations to forward data in opportunistic networks: The HiBOp solution. Pervasive and Mobile Computing, 4(5), 633–657.

    Article  Google Scholar 

  13. Hui, P., Crowcroft, J., & Yoneki, E. (2011). BUBBLE rap: Social-based forwarding in delay tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.

    Article  Google Scholar 

  14. Ding, G., & Bhargava, B. (2004). Peer-to-peer file-sharing over mobile ad hoc networks. Proceedings of the IEEE PerComW’ 04, Orlando, FL, pp. 104–108.

  15. Daly, E., & Haahr, M. (2007). Social network analysis for routing in disconnected delay-tolerant MANETs. In Proceedings of the ACM MobiHoc, pp. 32–40.

  16. Hui, P., Crowcroft, J., & Yoneki, E. (2008). Bubble rap: Social-based forwarding in delay tolerant networks. In Proceedings of the ACM MobiHoc, pp. 241–250.

  17. Motani, M., Srinivasan, V., & Nuggehalli, P. (2005). Peoplenet: Engineering a wireless virtual social network. In Proceedings of the ACM MobiCom, pp. 243–257.

  18. Srinivasan, V., Motani, M., & Ooi, W. (2006). Analysis and implications of student contact patterns derived from campus schedules. In Proceedings of the ACM MobiCom, pp. 86–97.

  19. Vahdat, A., & Becker, D. (2000). Epidemic routing for partially connected ad hoc networks. Duke University, Durham, NC, Technical Report CS-200006.

  20. Watts, D., & Strogatz, S. (1998). Collective dynamics of small-world networks. Nature, 393, 440–442.

    Article  Google Scholar 

  21. Lindgren, A., Doria, A., & Schelen, O. (2003). Probabilistic routing in intermittently connected networks. Computing and Communications Review, 7(3), 19–20.

    Article  Google Scholar 

  22. Zhao, W., Ammar, M., & Zegura, E. (2004). A message ferrying approach for data delivery in sparse mobile ad hoc networks. In Proceedings of the ACM MobiHoc, pp. 187–198.

  23. Gao, Wei., Li, Qinghua., Zhao, Bo., & Cao, Guohong. (2012). Social-aware multicast in disruption-tolerant networks. IEEE/ACM Transactions on Networking, 20(5), 1553–1566.

    Article  Google Scholar 

  24. Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In Proceedings of the ACM SIGCOMM, pp. 27–34.

  25. Pentland, A., Fletcher, R., & Hasson, A. (2004). DakNet: Rethinking connectivity in developing nations. IEEE Computer, 37(1), 78–83.

    Article  Google Scholar 

  26. Sushant, J., Fall, K., & Patra, R. (2004). Routing in a delay tolerant network. In Proceedings of the SIGCOMM’04.

  27. Pasarella, A., Kumar, M., Conti, M., & Borgia, E. (2011). Minimum-delay service provisioning in opportunistic networks. IEEE Transactions on Parallel and Distributed Systems, 22(8), 1267–1275.

    Article  Google Scholar 

  28. Boldrini, C., Conti, M., & Passarella, A. (2008). Exploiting users’ social relations to forward data in opportunistic networks: The HiBOp solution. Pervasive and Mobile Computing, 4(5), 633–657.

    Article  Google Scholar 

  29. Spyropoulos, T., Psounis, K., & Raghavendra, C. (2008). Efficient routing in intermittently connected mobile networks: The multiple-copy case. IEEE Transactions Networking, 16(1), 63–76.

    Article  Google Scholar 

  30. Chaintreau, A., Hui, P., Diot, C., Gass, R., & Scott, J. (2007). Impact of human mobility on opportunistic forwarding algorithms. IEEE Transactions on Mobile Computing, 6(6), 606–620.

    Article  Google Scholar 

  31. Boldrini, C., Conti, M., & Passarella, A. (2009). Design and performance evaluation of content place, a social-aware data dissemination system for opportunistic networks. Computer Networks, 54(5), 589–604.

    Google Scholar 

  32. Missoum, S., Gürdal, Z., & Setoodeh, S. (2005). Study of a new local update scheme for cellular automata in structural design. Structural and Multidisciplinary Optimization, 29(2). doi:10.1007/s00158-004-0464-2

  33. Chen, H., Finin, T., Joshi, A., Kagal, L., Perich, F., & Chakraborty, D. (2004). Intelligent agents meet the semantic web in smart spaces. IEEE Internet Computing, 8(6), 69–79.

    Article  Google Scholar 

  34. Protégé Home Page. http://protege.stanford.edu/.

  35. Silva, J., & Willett, R. (2009). Hypergraph-based anomaly detection of high-dimensional co-occurrences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(3), 563–569.

    Article  Google Scholar 

  36. Garcia, E. (2008). Targeting documents and terms: Using co-occurrence data, answer sets and probability theory. http://www.miislita.com/semantics/c-index-3.html.

  37. Li, M., Dias, B., El-Deredy, W., & Lisboa, P. J. G. (2007). A probabilistic model for item-based recommender systems. In Proceedings of the ACM international conference on recommender systems.

  38. Li, H., & Abe, N. (2002). Word clustering and disambiguation based on co-occurrence data. In Proceedings of the 19th international conference on computational linguistics.

  39. Globerson, A., Chechik, G., Pereira, F., & Tishby, N. (2007). Euclidean embedding of co-occurrence data. Journal of Machine Learning Research, 8, 2265–2295.

    MATH  MathSciNet  Google Scholar 

  40. Jhanwar, N., Chaudhuri, S., Seetharaman, G., & Zavidovique, B. (2004). Content based image retrieval using motif cooccurrence matrix. In Proceedings of the 4th Indian conference computer vision, graphics and image processing, Vol. 22, no. 14, pp. 1211–1220.

  41. Hofmann, T., & Puzicha, J. (1998). Statistical models for co-occurrence data. Technical report AIM-1625, Massachusetts Institute of Technology, citeseer.ist.psu.edu/article/hofmann98statistical.html.

  42. Rabbat, M. G., Figueiredo, M. A. T., & Nowak, R. D. (2008). Network inference from co-occurrences. IEEE Transactions on Information Theory, 54(9), 4053–4068.

    Article  MathSciNet  Google Scholar 

  43. Kubica, J., Moore, A., Cohn, D., & Schneider, J. (2003). cGraph: A fast graphbased method for link analysis and queries. In Proceedings of the IJCAI text-mining link-anal. workshop, Acapulco, Mexico, pp. 22–31.

  44. Pham, H., Hu, L., & Shahabi, C. (2011). A geo-social model: From real-world co-occurrences to social connections. IN Proceedings of the 7th international conference on databases in networked information systems, pp. 203–222.

  45. Maihöfer, C. (2004). A survey of geocast routing protocols. IEEE Communications Surveys & Tutorials, 6(2), 32–42.

    Article  Google Scholar 

  46. Heissenbüttel, M., & Braun, T. (2003). Ants-based routing in large scale mobile ad-hoc networks, Kommunikation in Verteilten Systemen (KiVS).

  47. Günes, M., Sorges, U., & Bouazizi, I. (2002). ARA—The ant-colony based routing algorithm for MANETs proceedings of the ICPP workshop on ad hoc networks (IWAHN 2002), IEEE Computer Society Press, pp. 79–85.

  48. Günes, M., Kähmer, M., & Bouazizi, I. (2003). Ant routing algorithm (ARA) for mobile multi-hop ad-hoc networks—New features and results, the second mediterranean workshop on ad-hoc networks.

  49. Roth, M., & Wicker, S. (2003). Termite: Ad-hoc networking with stigmergy. IEEE Global Telecommunications Conference, 5, 2937–2941.

    Google Scholar 

  50. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. Oxford: Oxford University Press.

  51. Ross, S. (1996). Stochastic processes, 2nd Edn. New York: Wiley.

  52. Kelly, F. P. (1979). Reversibility and stochastic networks. New York: Wiley.

    MATH  Google Scholar 

Download references

Acknowledgments

We thank the National Science Council of Taiwan for funding this research (Project No.: NSC MOST 103-2221-E-218-037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwo-Jiun Horng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horng, GJ. Opportunistic Content Sharing Scheme for Distributed Network in City Environments. Wireless Pers Commun 84, 2327–2350 (2015). https://doi.org/10.1007/s11277-015-2707-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2707-5

Keywords

Navigation