Skip to main content

Advertisement

Log in

Is phytoremediation a sustainable and reliable approach to clean-up contaminated water and soil in Alpine areas?

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background, aim and scope

Phytoremediation does exploit natural plant physiological processes and can be used to decontaminate agricultural soils, industrial sites, brownfields, sediments and water containing inorganic and organic pollutants or to improve food chain safety by phytostabilisation of toxic elements. It is a low-cost and environment friendly technology targetting removal, degradation or immobilisation of contaminants. The aim of the present review is to highlight some recent advances in phytoremediation in the Alpine context.

Main features

Case studies are presented where phytoremediation has been or can be successfully applied in Alpine areas to: (1) clean-up industrial wastewater containing sulphonated aromatic xenobiotics released by dye and textile industries; (2) remediate agricultural soils polluted by petroleum hydrocarbons; (3) improve food chain safety in soils contaminated with toxic trace elements (As, Co, Cr and Pb); and (4) treat soils impacted by modern agricultural activities with a special emphasis on phosphate fertilisation.

Conclusions, recommendations and perspectives

Worlwide, including in Alpine areas, the controlled use of appropriate plants is destined to play a major role for remediation and restoration of polluted and degraded ecosystems, monitoring and assessment of environmental quality, prevention of landscape degradation and immobilisation of trace elements. Phytotechnologies do already offer promising approaches towards environmental remediation, human health, food safety and sustainable development for the 21st century in Alpine areas and elsewhere all over the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almendras ML, Carballa M, Diels L, Vanbroekhoven K, Chamy R (2009) Prediction of heavy metals mobility and bioavailability in contaminated soil using sequential extraction and biosensors. J Environ Eng 135:839–844

    CAS  Google Scholar 

  • Antosiewicz DM, Escude-Duran C, Wierzbowska E, Sklodowska A (2008) Indigenous plant species with the potential for the phytoremediation of arsenic and metals contaminated soil. Water Air Soil Pollut 193:197–210

    CAS  Google Scholar 

  • Aubert S (2003) Accumulation and transformation of sulphonated anthraquinones by higher plants: a first step towards the phytotreatment of wastewater from dye and textile industry. Ph.D. thesis, EPFL Nr 2809

  • Aubert S, Schwitzguébel JP (2002) Separation of sulphonated anthraquinones in various matrices by capillary electrophoresis. Chromatographia 56:693–697

    CAS  Google Scholar 

  • Aubert S, Schwitzguébel JP (2004) Screening of plant species for the phytotreatment of wastewater containing sulphonated anthraquinones. Water Res 38:3569–3575

    CAS  Google Scholar 

  • Azcón R, Medina A, Roldán A, Biró B, Vivas A (2009) Significance of treated agrowaste residue and autochthonous inoculates (arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals. Chemosphere 75:327–334

    Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in-situ heavy-metal decontamination of polluted soils using crops of metal-accumulating plants. Res Conserv Recycl 11:41–49

    Google Scholar 

  • Barrutia O, Epelde L, Garcia-Plazaola JI, Garbisu C, Becerril JM (2009) Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: effect of fertilization. Chemosphere 74:259–264

    CAS  Google Scholar 

  • Becerra-Castro C, Monterroso C, Garcia-Leston M, Prieto-Fernandez A, Acea MJ, Kidd PS (2009) Rhizosphere microbial densities and trace metal tolerance of the nickel hyperaccumulator Alyssum serpyllifolium subsp. lusitanicum. Int J Phytoremediat 11:525–541

    CAS  Google Scholar 

  • Bert V, Seuntjens P, Dejonghe W, Lacherez S, Hoang Thi TT, Vandecasteele B (2009) Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites. Environ Sci Pollut Res 16:745–764

    CAS  Google Scholar 

  • Biro B, Koves-Pechy K, Voros I, Takacs T, Eggenberger P, Strasser RJ (2000) Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizospherenof alfalfa in sterile, AMF-free or normal soil conditions. Appl Soil Ecol 15:159–168

    Google Scholar 

  • Borin M, Passoni M, Thiene M, Tempesta T (2010) Multiple functions of buffer strips in farming areas. Europ J Agronomy 32:103–111

    Google Scholar 

  • Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697

    CAS  Google Scholar 

  • Bulc TG, Ojstrsek A (2008) The use of constructed wetlands for dye-rich textile wastewater treatment. J Hazard Mater 155:76–82

    CAS  Google Scholar 

  • Bulc TG, Slak AS (2009) Ecoremediation—a new concept in multifunctional ecosystem technologies for environmental protection. Desalination 246:2–10

    CAS  Google Scholar 

  • Burgos P, Perez-de-Mora A, Madejon P, Cabrera F, Madejon E (2008) Trace elements in wild grasses: a phytoavailability study on a remediated field. Environ Geochem Health 30:109–114

    CAS  Google Scholar 

  • Butcher DJ (2009) Phytoremediation of lead in soil: recent applications and future prospects. Appl Spectrosc Rev 44:123–139

    CAS  Google Scholar 

  • Cheng SP (2003) Effects of heavy metals on plants and resistance mechanisms. Environ Sci Pollut Res 10:256–264

    CAS  Google Scholar 

  • Clemente R, Dickinson NM, Lepp NW (2008) Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environ Pollut 155:254–261

    CAS  Google Scholar 

  • Comino E, Fiorucci A, Menegatti S, Marocco C (2009) Preliminary test of arsenic and mercury uptake by Poa annua. Ecol Eng 35:343–350

    Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    CAS  Google Scholar 

  • Cozzolino V, Pigna M, Di Meo V, Caporale AG, Violante A (2010) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl Soil Ecol 45:262–268

    Google Scholar 

  • Denys S, Rollin C, Guillot F, Baroudi H (2006) In-situ phytoremediation of PAHs contaminated soils following a bioremediation treatment. Water Air Soil Pollut Focus 6:299–315

    CAS  Google Scholar 

  • Dessureault-Rompre J, Nowack B, Schulin R, Tercier-Waeber ML, Luster J (2008) Metal solubility and speciation in the rhizosphere of Lupinus albus cluster roots. Environ Sci Technol 42:7146–7151

    CAS  Google Scholar 

  • Dickinson NM, Baker AJM, Doronila A, Laidlaw S, Reeves RD (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediat 11:97–114

    CAS  Google Scholar 

  • Euliss K, Ho CH, Schwab AP, Rock S, Banks MK (2008) Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresour Technol 99:1961–1971

    CAS  Google Scholar 

  • Fässler E, Robinson BH, Stauffer W, Gupta SK, Papritz A, Schulin R (2010) Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agric Ecosyst Environ 136:49–58

    Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformation in the soil–rhizosphere–plant system, fundamentals and potential application of phytoremediation. J Biotechnol 99:259–278

    CAS  Google Scholar 

  • French CJ, Dickinson NM, Putwain PF (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395

    CAS  Google Scholar 

  • Frossard E, Condor LM, Oberson A, Sinaj S, Fardeau JC, Sharply AN (2000) Practical and innovative measures for the control of agricultural P. J Environ Qual 29:15–23

    CAS  Google Scholar 

  • Gaind S, Gaur AC (2002) Impact of fly ash and phosphate solubilising bacteria on soybean productivity. Bioresour Technol 85:313–315

    CAS  Google Scholar 

  • Gao YZ, Collins CD (2009) Uptake pathways of polycyclic aromatic hydrocarbons in white clover. Environ Sci Technol 43:6190–6195

    CAS  Google Scholar 

  • Gao YZ, Ling W (2006) Comparison for plant uptake of phenanthrene and pyrene from soil and water. Biol Fertil Soils 42:387–394

    CAS  Google Scholar 

  • Garcia G, Zanussi AL, Faz A (2005) Evaluation of heavy metal availability prior to an in situ soil phytoremediation program. Biodegradation 16:187–194

    CAS  Google Scholar 

  • Gaskin SE, Bentham RH (2010) Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Sci Total Environ 408:3683–3688

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Grispen VMJ, Nelissen HJM, Verkleij JAC (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut 144:77–83

    CAS  Google Scholar 

  • Gurska J, Wang W, Gerhardt KE, Khalid AM, Isherwood DM, Huang XD, Glick BR, Greenberg BM (2009) Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environ Sci Technol 43:4472–4479

    CAS  Google Scholar 

  • Haberl R, Grego S, Langergraber G, Kadlec RH, Cicalini AR, Martins Dias S, Novais JM, Aubert S, Gerth A, Thomas H, Hebner A (2003) Constructed wetlands for the treatment of organic pollutants. J Soils Sediments 3:109–124

    CAS  Google Scholar 

  • Halder AK, Chakrabarty PK (1993) Solubilization of inorganic-phosphate by Rhizobium. Folia Microbiol 38:325–330

    CAS  Google Scholar 

  • Hartley W, Lepp NW (2008) Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils. Env Pollut 156:1030–1040

    CAS  Google Scholar 

  • Hernandez-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40

    CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    CAS  Google Scholar 

  • Imfeld G, Braeckevelt M, Kuschk P, Richnow HH (2009) Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 74:349–362

    CAS  Google Scholar 

  • Jeffries DS, Clair T, Couture S, Dillon P, Dupont J, Keller W, McNicol D, Tuner R, Vet R, Weever R (2003) Assessing recovery of lakes in southeastern Canada from acidic deposition. Ambio 32:176–182

    Google Scholar 

  • Jiang CA, Wu QT, Sterckeman T, Schwartz C, Sirguey C, Ouvrard S, Perriguey J, Morel JL (2010) Co-planting can phytoextract similar amounts of cadmium and zinc to mono-cropping from contaminated soils. Ecol Eng 36:391–395

    Google Scholar 

  • Keller J, Banks MK, Schwab AP (2008) Effect of soil depth on phytoremediation efficiency for petroleum contaminants. J Environ Sci Health A 43:1–9

    CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    CAS  Google Scholar 

  • Khalvati MA (2005) Quantification of water uptake of hyphae contribution to barley subjected to drought conditions. Ph.D. Thesis, Technical University of Munich, Germany

  • Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712

    CAS  Google Scholar 

  • Khattak RA, Page AL, Parker DR, Bakhtar D (1991) Accumulation and interaction of arsenic, selenium, molybdenum and phosphorous in alfalfa. J Environ Qual 20:165–168

    CAS  Google Scholar 

  • Kidd PS, Dominguez-Rodriguez MJ, Diez J, Monterroso C (2007) Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere 66:1458–1467

    CAS  Google Scholar 

  • Kidd P, Barcelo J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259

    CAS  Google Scholar 

  • Komives T, Gullner G, Bittsanszky A, Pascal S, Laurent F (2009) Phytoremediation of persistent organic pollutants. Cereal Res Commun 37:537–540

    CAS  Google Scholar 

  • Kumpiene J, Ore S, Lagerkvist A, Maurice C (2007) Stabilization of Pb- and Cu-contaminated soil using coal fly ask and peat. Environ Pollut 145:365–373

    CAS  Google Scholar 

  • Li XL, Marschner H, Tabatabai M (1991) Acquisition of phosphorus and copper by VA mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57

    CAS  Google Scholar 

  • Lin H, Tao S, Zuo Q, Coveney RM (2007) Uptake of polycyclic aromatic hydrocarbons by maize plants. Environ Pollut 148:614–619

    CAS  Google Scholar 

  • Liste HH, Prutz I (2006) Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere 62:1411–1420

    CAS  Google Scholar 

  • Liste HH, White JC (2008) Plant hydraulic lift of soil water—implications for crop production and land restoration. Plant Soil 313:1–17

    CAS  Google Scholar 

  • Luster J, Gottlein A, Nowack B, Sarret G (2009) Sampling, defining, characterizing and modeling the rhizosphere—the soil science tool box. Plant Soil 321:457–482

    CAS  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009a) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    CAS  Google Scholar 

  • Marques APGC, Moreira H, Rangel AOSS, Castro PML (2009b) Arsenic, lead and nickel accumulation in Rubus ulmifolius growing in contaminated soil in Esteiro de Estarreja Portugal. J Hazard Mater 165:174–179

    CAS  Google Scholar 

  • Martinez-Alcala I, Clemente R, Bernal MP (2009) Metal availability and chemical properties in the rhizosphere of Lupinus albus L. growing in a high-metal calcareous soil. Water Air Soil Pollut 201:283–293

    CAS  Google Scholar 

  • Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Witters N, Thewys T, Tack FMG (2010) The use of bio-energy crops (Zea mays) for “phytoattenuation” of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    CAS  Google Scholar 

  • Memon AR, Schröder P (2009) Metal accumulation in plants and its implication in phytoremediation. Environ Sci Pollut Res 16:162–175

    CAS  Google Scholar 

  • Mench M, Schwitzguébel JP, Schröder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    CAS  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schröder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070

    CAS  Google Scholar 

  • Nedunuri KV, Govindaraju RS, Banks MK, Schwab AP, Chen Z (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng 126:483–490

    CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP (2005) Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Int J Phytoremediat 7:337–349

    CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguébel JP (2007) Chemical mutagenesis—a promising technique to increase metal concentration and extraction in sunflowers. Int J Phytoremediat 9:149–165

    CAS  Google Scholar 

  • Nehnevajova E, Herzig R, Bourigault C, Bangerter S, Schwitzguébel JP (2009) Stability of enhanced yield and metal uptake by sunflower mutants for improved phytoremediation. Int J Phytoremediat 11:329–346

    CAS  Google Scholar 

  • Onwubuya K, Cundy A, Puschenreiter M, Kumpiene J, Bone B, Greaves J, Teasdale P, Mench M, Tlustos P, Mikahlovsky S, Waite S, Friesl-Hanl MB, Müller I (2009) Developing decision support tools for the selection of “gentle” remediation approaches. Sci Total Environ 407:6132–6142

    CAS  Google Scholar 

  • Otto S, Vianello M, Infantino A, Zanin G, Di Guardo A (2008) Effect of a full-grown vegetative filter strip on herbicide runoff: maintaining of filter capacity over time. Chemosphere 71:74–82

    CAS  Google Scholar 

  • Page V, Schwitzguébel JP (2009a) The role of cytochromes P450 and peroxidases in the detoxification of sulphonated anthraquinones by rhubarb and common sorrel plants cultivated under hydroponic conditions. Environ Sci Pollut Res 16:805–816

    CAS  Google Scholar 

  • Page V, Schwitzguébel JP (2009b) Metabolism of sulphonated anthraquinones in rhubarb, maize and celery: the role of cytochromes P450 and peroxidases. Plant Cell Rep 28:1725–1735

    CAS  Google Scholar 

  • Palmroth MRT, Koskinen PEP, Pichtel J, Vaajasaari K, Joutti A, Tuhkanen TA, Puhakka JA (2006) Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals. J Soils Sediments 6:128–136

    CAS  Google Scholar 

  • Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2009) Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere 75:808–814

    CAS  Google Scholar 

  • Peralta-Videa JR, Gardea-Torresdey JL, Gomez E, Tiemann KJ, Arteaga S, Rascon A, Parsons JG (2001) Uptake and effect of five heavy metals on germination and growth of live alfalfa plant (Medicago sativa) grown in solid media. Bull Environ Contam Toxicol 66:727–737

    Google Scholar 

  • Perriguey J, Sterckeman T, Morel JL (2008) Effect of rhizosphere and plant-related factors on the cadmium uptake by maize (Zea mays L.). Environ Exp Bot 63:333–341

    CAS  Google Scholar 

  • Plata-Chebbah N (2000) Etude inhérente à un procédé de phytoremédiation de sols contaminés par des hydrocarbures du pétrole. Ph.D. thesis, EPFL Nr 2306

  • Pongrac P, Sonjak S, Vogel-Mikuš K, Kump P, Nečemer M, Regvar M (2009) Roots of metal hyperaccumulating population of Thlaspi praecox (Brassicaceae) harbour arbuscular mycorrhizal and other fungi under experimental conditions. Int J Phytoremediat 11:347–359

    CAS  Google Scholar 

  • Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006) Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918–925

    CAS  Google Scholar 

  • Quartacci MF, Irtelli B, Gonnelli C, Gabbrielli R, Navari-Izzo F (2009) Naturally-assisted metal phytoextraction by Brassica carinata: role of root exudates. Environ Pollut 157:2697–2703

    CAS  Google Scholar 

  • Rahm L, Danielsson A (2007) Spatial heterogeneity of nutrients in the Baltic Proper, Baltic Sea. Coastal Self Sci 73:263–278

    Google Scholar 

  • Remon E, Bouchardon JL, Cornier B, Guy B, Leclerc JC, Faure O (2005) Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration. Environ Pollut 137:316–323

    CAS  Google Scholar 

  • Rezek J, der Wiesche C, Mackova M, Zadrazil F, Macek T (2008) The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere 70:1603–1608

    CAS  Google Scholar 

  • Robinson BH, Banuelos G, Conesa HM, Evangeliou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266

    CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilising bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    CAS  Google Scholar 

  • Schwitzguébel JP, Aubert S, Grosse W, Laturnus F (2002) Sulphonated aromatic pollutants—limits of microbial degradability and potential of phytoremediation. Environ Sci Pollut Res 9:62–72

    Google Scholar 

  • Schwitzguébel JP, Braillard S, Page V, Aubert S (2008) Accumulation and transformation of sulfonated aromatic compounds by higher plants—toward the phytotreatment of wastewater from dye and textile industries. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin, pp 335–353

    Google Scholar 

  • Schwitzguébel JP, Kumpiene J, Comino E, Vanek T (2009) From green to clean: a promising and sustainable approach towards environmental remediation and human health for the 21st century. Agrochimica 53:209–237

    Google Scholar 

  • Schwitzguébel JP, Page V, Martins Dias S, Davies L, Vasilyeva G, Strijakova E (2011) Using plants to remove foreign compounds from contaminated water and soil. In: Schröder P, Collins C (eds) Organic xenobiotics and plants: from mode of action to ecophysiology. Springer, Berlin, pp 149–189

    Google Scholar 

  • Singh BR, Krogstad T, Shivay YS, Shivakumar BG, Bakkegard M (2005) Phosphorus fractionation and sorption in P-enriched soils of Norway. Nutr Cycl Agroecosyst 73:245–256

    CAS  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250

    CAS  Google Scholar 

  • Turnau K, Anielska T, Ryszka P, Gawronski S, Ostachowicz B, Jurkiewicz A (2008) Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes—new solution for waste revegetation. Plant Soil 305:267–280

    CAS  Google Scholar 

  • Van Ginneken L, Meers E, Gzisson R, Ruttens A, Elst K, Tack FMG, Vangronsveld J, Diels L, Dejonghe W (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landscape Manage 15:227–236

    Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    CAS  Google Scholar 

  • Verkleij JAC (2008) Mechanisms of metal hypertolerance and (hyper)accumulation in plants. Agrochimica 52:167–188

    CAS  Google Scholar 

  • Vivas A, Biro B, Nemeth T, Barea JM, Azcon R (2006) Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38:2694–2704

    CAS  Google Scholar 

  • Vymazal J (2009) The use of constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35:1–17

    Google Scholar 

  • Vymazal J, Kröpfelovà L (2009) Removal of organics in constructed wetlands with horizontal sub-surface flow: a review of the field experience. Sci Total Environ 407:3911–3922

    CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    CAS  Google Scholar 

  • Xu SY, Chen YX, Lin KF, Chen XC, Lin Q, Li F, Wang ZW (2009) Removal of pyrene from contaminated soils by white clover. Pedosphere 19:265–272

    CAS  Google Scholar 

  • Yeo Q, Li X, Feng G, Christie P (2001) Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an arbuscular mycorrhizal fungus. Plant Soil 230:279–285

    Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    CAS  Google Scholar 

  • Zabłudowska E, Kowalska J, Jedynak Ł, Wojas S, Skłodowska A, Antosiewicz DM (2009) Search for a plant for phytoremediation—what can we learn from field and hydroponic studies? Chemosphere 77:301–307

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the European project Alps Bio Cluster (Biotech and Medtech in Alpine Space), http://www.alpsbiocluster.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Schwitzguébel.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwitzguébel, JP., Comino, E., Plata, N. et al. Is phytoremediation a sustainable and reliable approach to clean-up contaminated water and soil in Alpine areas?. Environ Sci Pollut Res 18, 842–856 (2011). https://doi.org/10.1007/s11356-011-0498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0498-0

Keywords

Navigation