Skip to main content
Log in

Effect of operational parameters on heavy metal removal by electrocoagulation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present paper, the performance of electrocoagulation (EC) for the treatability of mixed metals (chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn)) from metal plating industrial wastewater (EPW) has been investigated. The study mainly focused on the affecting parameters of EC process, such as electrode material, initial pH, distance between electrodes, electrode size, and applied voltage. The pH 8 is observed to be the best for metal removal. Fe–Fe electrode pair with 1-cm inter-electrode distance and electrode surface area of 40 cm2 at an applied voltage of 8 V is observed to more efficient in the metal removal. Experiments have shown that the maximum removal percentage of the metals like Cr, Ni, Zn, Cu, and Pb are reported to be 96.2, 96.4, 99.9, 98, and 99.5 %, respectively, at a reaction time of 30 min. Under optimum conditions, the energy consumption is observed to be 51.40 kWh/m3. The method is observed to be very effective in the removal of metals from electroplating effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas HS, Abdulmajeed BA, Salman AB (2014) Electrochemical removal of cadmium from simulated wastewater using a smooth rotating cylinder electrode. Desalin Water Treat. doi:10.1080/19443994.2014.903520

    Google Scholar 

  • Abdurrahman A, Orhan Taner C, Erhan D, Mehmet K (2013) A comparative study of electrocoagulation and electro-Fenton for treatment of wastewater from liquid organic fertilizer plant. Sep Purif Technol. doi:10.1016/j.seppur.2013.03.036

    Google Scholar 

  • Akbal SC (2011a) Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination. doi:10.1016/j.desal.2010.11.001

    Google Scholar 

  • Akbal SC (2011b) Treatment of metal plating wastewater by electrocoagulation. Environ Prog Sustain Energy. doi:10.1002/ep.10546

    Google Scholar 

  • Akbal SC (2013) Comparison of electrocoagulation and chemical coagulation for heavy metal removal. Chem Eng Technol. doi:10.1002/ceat.201000091

    Google Scholar 

  • Anissa A, Fersi C, Ali MBS, Dhahbi M (2009) Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process. J Hazard Mater. doi:10.1016/j.jhazmat.2009.02.112

    Google Scholar 

  • Arash D, Gholami M, Joneidi A, Mahmoodi NM (2011) Dye removal, energy consumption and operating cost of electrocoagulation of textile wastewater as a clean process. Clean Soil Air Water. doi:10.1002/clen.201000233

    Google Scholar 

  • Arroyo MG, Perez-Herranz V, Montanes MT, Garcia-Anton J, Guinon JL (2009) Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor. J Hazard Mater. doi:10.1016/j.jhazmat.2009.04.089

    Google Scholar 

  • Ashok KC, Sharma AK (2013) Removal of turbidity. COD and BOD from secondarily treated sewage water by electrolytic treatment. Appl Water Sci. doi:10.1007/s13201-012-0066-x

    Google Scholar 

  • Ashraf EP, Nikazar M, Arami M (2011) Removal of Co (II) from aqueous solution by electrocoagulation process using aluminum electrodes. Desalination. doi:10.1016/j.desal.2011.05.070

    Google Scholar 

  • Bazafshan E, Mahvim AH, Nasseri S, Mesdaghinia AR, Vaezi F, Nazmara SH (2006) Removal of cadmium from industrial effluents by electrocoagulation process using iron electrodes, Iran. J Environ Health Sci Eng 3:261–266

    Google Scholar 

  • Bhagawan D, Poodari S, Kumar GR, Golla S, Anand CH, Banda KS, Himabindu V, Vidyavathi S (2014) Reactivation and recycling of spent carbon using solvent desorption followed by thermal treatment (TR). J Mater Cycles Waste Manag. doi:10.1007/s10163-014-0237-y

    Google Scholar 

  • Central Pollution Control Board (CPCB) (2012) Environmental protection rules 2nd amendment. http://cpcb.nic.in/Water_Quality_Criteria.php

  • Cheng H (2006) Cu(II) removal from lithium bromide refrigerant by chemical precipitation and electrocoagulation. Sep Purif Technol. doi:10.1016/j.seppur.2006.03.021

    Google Scholar 

  • Chih W-LC, Kuo Y-M (2009) Removal of COD from laundry wastewater by electrocoagulation/electroflotation. J Hazard Mater. doi:10.1016/j.jhazmat.2008.07.122

    Google Scholar 

  • Denial R, Anjaneyui Y, Krupdam RJ (2007) Electrocoagulation: a cleaner method for treatment of cr(vi) from electroplating industrial effluents. Indian J Chem Technol 14:240–245

    Google Scholar 

  • Dermentzis K, Christoforids A, Valsamidou E, Lazaridou A, Kokkinos N (2011a) Removal of hexavalent chromium from electroplating wastewater by electrocoagulation with iron electrodes. Glob Nest J 13:412–418

    Google Scholar 

  • Dermentzis K, Christoforidis A, Valsamidou E (2011b) Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation. Int J Environ Sci. doi:10.6088/ijessi.00105020001

    Google Scholar 

  • Fatiha PD, Lekhlif B, Bensaid J, Blais J-F, Belcadi S, El Kacemi K (2008) Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation. J Hazard Mater. doi:10.1016/j.jhazmat.2007.11.041

    Google Scholar 

  • Ghosh D, Medhi CR, Solanki H (2008) Purkait MK Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. J Environ Prot Sci 2:25–35

    Google Scholar 

  • Golder AK, Samanta AN, Ray S (2007a) Removal of trivalent chromium by electrocoagulation. Sep Purif Technol. doi:10.1016/j.seppur.2006.06.010

    Google Scholar 

  • Golder AK, Samanta AN, Ray S (2007b) Trivalent chromium removal by electrocoagulation and characterization of the process sludge. J Chem Technol Biotechnol. doi:10.1002/jctb.1700

    Google Scholar 

  • Golder AK, Dhaneesh VS, Samanta AN, Subhabrata R (2009) Electrotreatment of industrial copper plating rinse effluent using mild steel and aluminum electrodes. J Chem Technol Biotechnol. doi:10.1002/jctb.2249

    Google Scholar 

  • Golder AK, Samanta AN, Ray S (2011) Removal of chromium and organic pollutants from industrial chrome tanning effluents by electrocoagulation. Chem Eng Technol. doi:10.1002/ceat.201000236

    Google Scholar 

  • Ichrak AH, Nafaa A, Lotfi M (2013) Treatment of petroleum refinery sulfidic spent caustic wastes by electrocoagulation. Sep Purif Technol. doi:10.1016/j.seppur.2013.01.051

    Google Scholar 

  • Ilona H, Wolfgang C (2008) Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation. J Hazard Mater. doi:10.1016/j.jhazmat.2007.07.068

    Google Scholar 

  • Kim K, Cui F, Yoon H, Kim M (2013) Treatment of copper wastewater using optimal current electrochemical–coagulation. Environ Technol. doi:10.1080/09593330.2012.696716

    Google Scholar 

  • Kobya M, Demirbas E, Parlak NU, Yigit S (2010) Treatment of cadmium and nickel electroplating rinse water by electrocoagulation. Environ Technol. doi:10.1080/09593331003713693

    Google Scholar 

  • Meunier N, Drogui P, Montane C, Hausler R, Mercier G, Blais JF (2006) Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. J Hazard Mater. doi:10.1016/j.jhazmat.2006.02.050

    Google Scholar 

  • Meyyappan MS, Chiya AB, Velan M (2012) Removal of copper, nickel, and zinc ions from electroplating rinse water. Clean Soil Air Water. doi:10.1002/clen.201000477

    Google Scholar 

  • Mohd LS, Wahid ZA (2012) Treatment of sewage by electrocoagulation and the effect of high current density. Energy and Environmental Engineering Journal. http://assetedu.org/viewjc.php?id=j1&page_id=18&volume_id=4&content_id=8

  • Nafaa Adhoum, Monser L, Bellakhal N, Belgaied J-E (2004) Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation. J Hazard Mater. doi:10.1016/j.jhazmat.2004.04.018

    Google Scholar 

  • Ramakrishnan K, Ganesan P, Lakshmi J, Vasudevan S (2013) Removal of copper from water by electrocoagulation process—effect of alternating current (AC) and direct current (DC). Environ Sci Pollut Res. doi:10.1007/s11356-012-0855-7

    Google Scholar 

  • Saeb ES, Javadian HR, Katal R, Seft MV (2013) Removal of oil from biodiesel wastewater by electrocoagulation method. Korean J Chem Eng. doi:10.1007/s11814-012-0162-5

    Google Scholar 

  • Sepideh S, Moghaddam MRA, Arami M (2013) Improvement of electrocoagulation process on hexavalent chromium removal with the use of polyaluminum chloride as coagulant. Desalin Water Treat. doi:10.1080/19443994.2013.814328

    Google Scholar 

  • Subramanyan V, Lakshmi J, Ramakrishnan K, Sozhan G (2013) A critical study on the removal of copper by an electrochemically assisted coagulation: equilibrium, kinetics, and thermodynamics. Asia Pac J Chem Eng. doi:10.1002/apj.1657

    Google Scholar 

  • Toktam S, Bidhendi GN, Mehrdadi N, Torabian A (2014) Removal of chromium (III) from wastewater by electrocoagulation method. KSCE J Civ Eng. doi:10.1007/s12205-014-0642-8

    Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2009) Studies on the removal of iron from drinking water by electrocoagulation—a clean process. Clean Soil Air Water. doi:10.1002/clen.200800175

    Google Scholar 

  • Visnja RK, Nad K, Mikelic IL, Gustek SF (2013) Treatment of winery wastewater by electrochemical methods and advanced oxidation processes. J Environ Sci Health. doi:10.1080/10934529.2013.797267

    Google Scholar 

  • YaoXing XYW, Yuan DX, Yan JM (2013) Removal of nickel from aqueous solution using cathodic deposition of nickel hydroxide at a modified electrode. J Chem Technol Biotechnol. doi:10.1002/jctb.4085

    Google Scholar 

  • Yusuf Y, Ocal E, Koparal AS, Bakır U, Utveren OG (2011) Treatment of dairy industry wastewater by EC and EF processes using hybrid Fe–Al plate electrodes. J Chem Technol Biotechnol. doi:10.1002/jctb.2607

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Environmental Solutions Pvt. Ltd., Hyderabad, India, for providing experimental setup and electroplating industrial effluent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Himabindu.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagawan, D., Poodari, S., Pothuraju, T. et al. Effect of operational parameters on heavy metal removal by electrocoagulation. Environ Sci Pollut Res 21, 14166–14173 (2014). https://doi.org/10.1007/s11356-014-3331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3331-8

Keywords

Navigation