Skip to main content
Log in

Biodecolorization of recalcitrant dye as the sole sourceof nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Extensive use of recalcitrant azo dyes in textile and paper industries poses a direct threat to the environment due to the carcinogenicity of their degradation products. The aim of this study was to investigate the efficiency of Curvularia clavata NZ2 in decolorization of azo dyes. The ability of the fungus to decolorize azo dyes can be evaluated as an important outcome as existing effluent treatment is unable to remove the dyes effectively. C. clavata has the ability to decolorize Reactive Black 5 (RB5), Acid Orange 7 (AO7), and Congo Red azo dyes, utilizing these as sole sources of carbon and nitrogen. Ultraviolet–visible (UV–vis) spectroscopy and Fourier infrared spectroscopy (FTIR) analysis of the extracted RB5’s metabolites along with desorption tests confirmed that the decolorization process occurred due to degradation and not merely by adsorption. Enzyme activities of extracellular enzymes such as carboxymethylcellulase (CMCase), xylanase, laccase, and manganese peroxidase (MnP) were also detected during the decolorization process. Toxicity expressed as inhibition of germination was reduced significantly in fungal-treated azo dye solution when compared with the control. The cultivation of C. clavata under sequential batch system also recorded a decolorization efficiency of above 90 %. The crude enzyme secreted by C. clavata also showed excellent ability to decolorize RB5 solutions with concentrations of 100 ppm (88–92 %) and 1000 ppm (70–77 %) without redox mediator. This proved that extracellular enzymes produced by C. clavata played a major role in decolorization of RB5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Aty AM, Hamed MB, Fahmy AS, Mohamed SA (2013) Comparison of the potential of Ficus sycomorus latex and horseradish peroxidases in the decolorization of synthetic and natural dyes. J Genet Eng Biotechnol 11(2):95–102. doi:10.1016/j.jgeb.2013.07.001

    Article  Google Scholar 

  • Abid MF, Zablouk MA, Abid-Alameer AM (2012) Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iran J Environ Health Sci Eng 9(1):17

    Article  Google Scholar 

  • Adnan L, Mohd Yusoff A, Hadibarata T, Khudhair A (2014) Biodegradation of bis-azo dye Reactive Black 5 by white-rot fungus Trametes gibbosa sp. WRF 3 and its metabolite characterization. Water Air Soil Pollut 225(10):1–11. doi:10.1007/s11270-014-2119-2

    Article  CAS  Google Scholar 

  • Anastasi A, Parato B, Spina F, Tigini V, Prigione V, Varese GC (2011) Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnol 29(1):38–45

    Article  CAS  Google Scholar 

  • Aracagok YD, Cihangir N (2013) Decolorization of Reactive Black 5 by Yarrowia lipolytica NBRC 1658. Am J Microbiological Res 1(2):16–20

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dyecontaining effluents: a review. Bioresour Technol 58(3):217–227. doi:10.1016/S0960-8524(96)00113-7

    Article  CAS  Google Scholar 

  • Brás R, Gomes A, Ferra MIA, Pinheiro HM, Gonçalves IC (2005) Monoazo and diazo dye decolourisation studies in a methanogenic UASB reactor. J Biotechnol 115(1):57–66. doi:10.1016/j.jbiotec.2004.08.001

    Article  Google Scholar 

  • Cajthaml T, Möder M, Kačer P, Šašek V, Popp P (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatogr A 974(1–2):213–222. doi:10.1016/S0021-9673(02)00904-4

    Article  CAS  Google Scholar 

  • Chakraborty S, Basak B, Dutta S, Bhunia B, Dey A (2013) Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresour Technol 147:662–666. doi:10.1016/j.biortech.2013.08.117

    Article  CAS  Google Scholar 

  • Choi Y-S, Long Y, Kim M-J, Kim J-J, Kim G-H (2013) Decolorization and degradation of synthetic dyes by Irpex lacteus KUC8958. J Environ Sci Health A 48(5):501–508. doi:10.1080/10934529.2013.730419

    Article  CAS  Google Scholar 

  • Couto SR, Toca-Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569

    Article  CAS  Google Scholar 

  • Dachipally P, Jonnalagadda SB (2011) Kinetics of ozone-initiated oxidation of textile dye, Amaranth in aqueous systems. J Environ Sci Health A 46(8):887–897. doi:10.1080/10934529.2011.580201

    Article  CAS  Google Scholar 

  • Dawkar V, Jadhav U, Ghodake G, Govindwar S (2009) Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS. Biodegradation 20(6):777–787. doi:10.1007/s10532-009-9266-y

    Article  CAS  Google Scholar 

  • Forss J, Welander U (2011) Biodegradation of azo and anthraquinone dyes in continuous systems. Int Biodeterior Biodegrad 65(1):227–237. doi:10.1016/j.ibiod.2010.11.006

    Article  CAS  Google Scholar 

  • Gahlout M, Gupte S, Gupte A (2013) Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by Ganoderma cupreum AG-1. 3. Biotech 3(2):143–152. doi:10.1007/s13205-012-0079-z

    Google Scholar 

  • Garcia-Segura S, Centellas F, Arias C, Garrido JA, Rodríguez RM, Cabot PL, Brillas E (2011) Comparative decolorization of monoazo, diazo and triazo dyes by electro-Fenton process. Electrochim Acta 58:303–311. doi:10.1016/j.electacta.2011.09.049

    Article  CAS  Google Scholar 

  • Govindwar SP, Kurade MB, Tamboli DP, Kabra AN, Kim PJ, Waghmode TR (2014) Decolorization and degradation of xenobiotic azo dye Reactive Yellow-84A and textile effluent by Galactomyces geotrichum. Chemosphere 109:234–238. doi:10.1016/j.chemosphere.2014.02.009

    Article  CAS  Google Scholar 

  • Gusakov AV, Kondratyeva EG, Sinitsyn AP (2011) Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities. International Journal of Analytical Chemistry:Article ID 283658, 283654 pages, 282011. doi:283610.281155/282011/283658. doi: 10.1155/2011/283658

  • HACH (2005) HACH water analysis DR5000 spectrohotometer procedures manual HACH Company, USA

  • Hadibarata T, Adnan L, Yusoff A, Yuniarto A, Rubiyatno, Zubir M, Khudhair A, Teh Z, Naser MA (2013) Microbial decolorization of an azo dye Reactive Black 5 using white-rot fungus Pleurotus eryngii F032. Water Air Soil Pollut 224(6):1–9. doi:10.1007/s11270-013-1595-0

    Article  CAS  Google Scholar 

  • Hai FI, Yamamoto K, Nakajima F, Fukushi K, Nghiem LD, Price WE, Jin B (2013) Degradation of azo dye Acid Orange 7 in a membrane bioreactor by pellets and attached growth of Coriolus versicolour. Bioresour Technol 141:29–34. doi:10.1016/j.biortech.2013.02.020

    Article  CAS  Google Scholar 

  • Ho L-N, Ong S-A, See Y (2012) Photocatalytic degradation of Reactive Black 5 by fish scale-loaded TiO2 composites. Water Air Soil Pollut 223(7):4437–4442. doi:10.1007/s11270-012-1207-4

    Article  CAS  Google Scholar 

  • Jin X-C, Liu G-Q, Xu Z-H, Tao W-Y (2007) Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol 74(1):239–243. doi:10.1007/s00253-006-0658-1

    Article  CAS  Google Scholar 

  • Kalpana D, Shim JH, Oh B-T, Senthil K, Lee YS (2011) Bioremediation of the heavy metal complex dye Isolan Dark Blue 2SGL-01 by white rot fungus Irpex lacteus. J Hazard Mater 198:198–205

    Article  CAS  Google Scholar 

  • Khlifi R, Belbahri L, Woodward S, Ellouz M, Dhouib A, Sayadi S, Mechichi T (2010) Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. J Hazard Mater 175(1–3):802–808. doi:10.1016/j.jhazmat.2009.10.079

    Article  CAS  Google Scholar 

  • Konsowa AH, Abd El-Rahman HB, Moustafa MA (2011) Removal of azo dye Acid Orange 7 using aerobic membrane bioreactor. Alex Eng J 50(1):117–125. doi:10.1016/j.aej.2011.01.014

    Article  CAS  Google Scholar 

  • Li X, Jia R (2008) Decolorization and biosorption for Congo red by system rice hull-Schizophyllum sp. F17 under solid-state condition in a continuous flow packed-bed bioreactor. Bioresour Technol 99(15):6885–6892. doi:10.1016/j.biortech.2008.01.049

    Article  CAS  Google Scholar 

  • Lim CK, Bay HH, Kee TC, Majid ZA, Ibrahim Z (2011) Decolourisation of Reactive Black 5 using Paenibacillus sp. immobilised onto macrocomposite. Journal of Bioremediation & Biodegradation S1:004. doi: 10.4172/2155-6199.S1-004

  • Lim C, Bay H, Aris A, Abdul Majid Z, Ibrahim Z (2013) Biosorption and biodegradation of Acid Orange 7 by Enterococcus faecalis strain ZL: optimization by response surface methodological approach. Environ Sci Pollut Res:1-11. doi: 10.1007/s11356-013-1476-5

  • Liu G, Zhou J, Wang J, Zhou M, Lu H, Jin R (2009) Acceleration of azo dye decolorization by using quinone reductase activity of azoreductase and quinone redox mediator. Bioresour Technol 100(11):2791–2795. doi:10.1016/j.biortech.2008.12.040

    Article  CAS  Google Scholar 

  • Ma L, Zhuo R, Liu H, Yu D, Jiang M, Zhang X, Yang Y (2014) Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochem Eng J 82:1–9. doi:10.1016/j.bej.2013.10.015

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  • Miranda RCM, Gomes EB, Gouveia ER, Maria K, Machado G, Gusmao NB (2012) Decolorization of laundry effluent by filamentous fungi. Afr J Biotechnol 11(18):4216–4224

    Google Scholar 

  • Neoh C, Lam C, Lim C, Yahya A, Ibrahim Z (2014) Decolorization of palm oil mill effluent using growing cultures of Curvularia clavata. Environ Sci Pollut Res 21(6):4397–4408. doi:10.1007/s11356-013-2350-1

    Article  CAS  Google Scholar 

  • Ning X-a, Yang C, Wang Y, Yang Z, Wang J, Li R (2014) Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226. Biotechnol Bioproc E 19(4):687–695. doi:10.1007/s12257-013-0729-y

    Article  CAS  Google Scholar 

  • Novotný Č, Svobodová K, Erbanová P, Cajthaml T, Kasinath A, Lang E, Šašek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36(10):1545–1551. doi:10.1016/j.soilbio.2004.07.019

    Article  Google Scholar 

  • Oranusi NA, Mbah AN (2005) Utilisation of azo and triphenylmethane dyes as sole source of carbon, energy and nitrogen by Bacillus sp. Afr J Appl Zool Environ Biol 7:87–94

    Google Scholar 

  • Ottoni C, Santos C, Kozakiewicz Z, Lima N (2013) White-rot fungi capable of decolourising textile dyes under alkaline conditions. Folia Microbiol 58(3):187–193. doi:10.1007/s12223-012-0196-4

    Article  CAS  Google Scholar 

  • Patel R, Suresh S (2008) Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresour Technol 99(1):51–58

    Article  CAS  Google Scholar 

  • Qian L, Chen B (2012) Enhanced oxidation of benzo[a]pyrene by crude enzyme extracts produced during interspecific fungal interaction of Trametes versicolor and Phanerochaete chrysosporium. J Environ Sci 24(9):1639–1646. doi:10.1016/S1001-0742(11)61056-5

    Article  CAS  Google Scholar 

  • Renganathan S, Thilagaraj WR, Miranda LR, Gautam P, Velan M (2006) Accumulation of Acid Orange 7, Acid Red 18 and Reactive Black 5 by growing Schizophyllum commune. Bioresour Technol 97(16):2189–2193. doi:10.1016/j.biortech.2005.09.018

    Article  CAS  Google Scholar 

  • Saavedra M, Benitez E, Cifuentes C, Nogales R (2006) Enzyme activities and chemical changes in wet olive cake after treatment with Pleurotus ostreatus or Eisenia fetida. Biodegradation 17(1):93–102. doi:10.1007/s10532-005-4216-9

    Article  CAS  Google Scholar 

  • Sanghi R, Dixit A, Verma P (2011) Evaluation of Coriolus versicolor for its tolerance towards toxic sulphonic azo dyes in sequential batch mode. Process Saf Environ Prot 89(1):15–21. doi:10.1016/j.psep.2010.08.007

    Article  CAS  Google Scholar 

  • Senan R, Abraham TE (2004) Bioremediation of textile azo dyes by aerobic bacterial consortium aerobic degradation of selected azo dyes by bacterial consortium. Biodegradation 15(4):275–280. doi:10.1023/B:BIOD.0000043000.18427.0a

    Article  CAS  Google Scholar 

  • Vaithanomsat P, Apiwatanapiwat W, Petchoy O, Chedchant J (2010) Decolorization of Reactive Dye by White-Rot Fungus Datronia sp. KAPI0039. Kasetsart J (Nat Sci) 44:879–890

    CAS  Google Scholar 

  • Wang ZW, Liang JS, Liang Y (2013) Decolorization of Reactive Black 5 by a newly isolated bacterium Bacillus sp. YZU1. Int Biodeterior Biodegrad 76:41–48. doi:10.1016/j.ibiod.2012.06.023

    Article  CAS  Google Scholar 

  • Wang X, Cheng X, Sun D, Ren Y, Xu G (2014) Fate and transformation of naphthylaminesulfonic azo dye Reactive Black 5 during wastewater treatment process. Environ Sci Pollut Res 21(8):5713–5723. doi:10.1007/s11356-014-2502-y

    Article  CAS  Google Scholar 

  • Yang Q, Li C, Li H, Li Y, Yu N (2009) Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor. Biochem Eng J 43(3):225–230. doi:10.1016/j.bej.2008.10.002

    Article  CAS  Google Scholar 

  • Yu G, Wen X, Li R, Qian Y (2006) In vitro degradation of a reactive azo dye by crude ligninolytic enzymes from nonimmersed liquid culture of Phanerochaete chrysosporium. Process Biochem 41(9):1987–1993. doi:10.1016/j.procbio.2006.04.008

    Article  CAS  Google Scholar 

  • Yuen CWM, Ku SKA, Choi PSR, Kan CW, Tsang SY (2005) Determining functional groups of commercially available ink-jet printing reactive dyes using infrared spectroscopy. Res J Text Appar 9(2):26–38

    Google Scholar 

  • Zeng X, Cai Y, Liao X, Zeng X, Li W, Zhang D (2011) Decolorization of synthetic dyes by crude laccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrial residue. J Hazard Mater 187(1–3):517–525. doi:10.1016/j.jhazmat.2011.01.068

    Article  CAS  Google Scholar 

  • Zucconi F, Monaco A, Forte M (1985) Phytotoxins dur-ing the stabilization of organic matter. Composting of agricultural and other wastes. Elsevier Applied Science Publication, New York

    Google Scholar 

Download references

Acknowledgments

This article is based on the work supported by Universiti Teknologi Malaysia, Post Doc RU Grant (PDRU) VOT 01E93 and 02E13.

Compliance with Ethical Requirements

The article does not contain studies with human participants or animals performed by any of the authors.

Conflict of interest

All the authors declare that that there is no actual or potential conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainura Zainon Noor.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neoh, C.H., Lam, C.Y., Lim, C.K. et al. Biodecolorization of recalcitrant dye as the sole sourceof nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes. Environ Sci Pollut Res 22, 11669–11678 (2015). https://doi.org/10.1007/s11356-015-4436-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4436-4

Keywords

Navigation