Skip to main content

Advertisement

Log in

Using live algae at the anode of a microbial fuel cell to generate electricity

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Live green microalgae Chlorella pyrenoidosa was introduced in the anode of a microbial fuel cell (MFC) to act as an electron donor. By controlling the oxygen content, light intensity, and algal cell density at the anode, microalgae would generate electricity without requiring externally added substrates. Two models of algal microbial fuel cells (MFCs) were constructed with graphite/carbon electrodes and no mediator. Model 1 algal MFC has live microalgae grown at the anode and potassium ferricyanide at the cathode, while model 2 algal MFC had live microalgae in both the anode and cathode in different growth conditions. Results indicated that a higher current produced in model 1 algal MFC was obtained at low light intensity of 2500 lx and algal cell density of 5 × 106 cells/ml, in which high algal density would limit the electricity generation, probably by increasing oxygen level and mass transfer problem. The maximum power density per unit anode volume obtained in model 1 algal MFC was relatively high at 6030 mW/m2, while the maximum power density at 30.15 mW/m2 was comparable with that of previous reported bacteria-driven MFC with graphite/carbon electrodes. A much smaller power density at 2.5 mW/m2 was observed in model 2 algal MFC. Increasing the algal cell permeability by 4-nitroaniline would increase the open circuit voltage, while the mitochondrial acting and proton leak promoting agents resveratrol and 2,4-dinitrophenol would increase the electric current production in algal MFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MFC:

Microbial fuel cell

4NA:

4-Nitroaniline

RVT:

Resveratrol

DNP:

2,4-Dinitrophenol

DO:

Dissolved oxygen

References

  • Aktan S, Ubay ÇE, GÜcın F (2011) Mikrobiyel yakıt hücresinde Shewanella putrefaciens. Water Pollut Contr 21:79–87

    Google Scholar 

  • Allen RM, Bennetto HP (1993) Microbial fuel cells: electricity production from carbohydrates. Appl Biochem Biotechnol 39:27–40

  • Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper M (2005) Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am J Physiol Endocrinol Metab 289:E429–E438

    Article  CAS  Google Scholar 

  • Brand MD (1990) The proton leak across the mitochondrial inner membrane. Biochim Biophys Acta 1018:128–133

    Article  CAS  Google Scholar 

  • Brand MD (2010) Mitochondrial proton and electron leaks. Essays In Biochemistry, Essays Biochem., 47,53–67.

  • Brand MD, Chien LF, Ainscow EK, Rolfe DF, Porter RK (1994) The causes and functions of mitochondrial proton leak. Biochim Biophys Acta 1187(2):132–139

    Article  CAS  Google Scholar 

  • Brand MD, Affortit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37:755–767

    Article  CAS  Google Scholar 

  • Brutinel E, Gralnick J (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48

    Article  Google Scholar 

  • Buitrón G, Cervantes-Astorga C (2013) Performance evaluation of a low-cost microbial fuel cell using municipal wastewater. Water Air Soil Pollut 224(3):1–8

    Article  Google Scholar 

  • Butler C, Nerenberg R (2010) Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies. Appl Microbiol Biotechnol 86:1399–1408

    Article  CAS  Google Scholar 

  • Chae K, Choi M, Ajayi FF, Park W, Chang IS, Kim IS, Kim IS (2008) Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuel 22:169–176

    Article  CAS  Google Scholar 

  • Chang YY, Zhao HZ, Zhong C, Xue A (2014) Effects of different Pt-M (M = Fe, Co, Ni) alloy as cathodic catalyst on the performance of two-chambered microbial fuel cells. Russ J Electrochem 50(9):885–890

    Article  CAS  Google Scholar 

  • Chen Z, Huang YC, Liang JH, Zhao F, Zhu YG (2012) A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresour Technol 108:55–59

    Article  CAS  Google Scholar 

  • Christian JS, Sun MM, Scott RC, Lee EH, James JS (2007) Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl Microbiol Biotechnol 76:561–568

    Article  Google Scholar 

  • Cui Y, Rashid N, Hu N, Rehman MSU, Han JI (2014) Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers Manage 79:674–680

    Article  CAS  Google Scholar 

  • Delaney GM, Bennetto HP, Mason JR, Roller SD, Stirling JL, Thurston CF (2008) Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations. J Chem Tech Biogeosci 34:13

    Article  Google Scholar 

  • DuPont A (2013) Best practices for the sustainable production of algae-based biofuel in China. Mitig Adapt Strateg Glob Change 18:97–111

    Article  Google Scholar 

  • Fernandoa E, Keshavarza T, Kyazzeb G (2014) External resistance as a potential tool for influencing azo dye reductive decolourisation kinetics in microbial fuel cells. Int J Biodeterior Biodegrad 89:7–14

    Article  Google Scholar 

  • Fraiwan A, Call DF, Seokheun C (2014) Bacterial growth and respiration in laminar flow microbial fuel cells. J Renew Sustain Energ 6(2):1–9

    Article  Google Scholar 

  • Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3:899–919

    Article  CAS  Google Scholar 

  • Gorman DS, Levine R (1965) Cytochrome f and plastocyanin: their sequence in the 282 photosynthetic electron transport chain of Chlamydomonas reinhardtii. PNAS USA 283(54):1665–1669

    Article  Google Scholar 

  • Gouveia L, Neves C, Sebastião D, Nobre B, Matos CT (2014) Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Bioresour Technol 154:171–177

    Article  CAS  Google Scholar 

  • Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD (2010) Mitochondrial proton and electron leaks. Essays in Biochem 47:53–67

    Article  CAS  Google Scholar 

  • Juang DF, Yang PC, Chou HY, Chiu LJ (2011) Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells. Biotechnol Lett 33:2147–2160

    Article  CAS  Google Scholar 

  • Juang D, Yang P, Kuo T (2012) Effects of flow rate and chemical oxygen demand removal characteristics on power generation performance of microbial fuel cells. Int J Environ Sci Technol 9:267–280

    Article  CAS  Google Scholar 

  • Kakarla R, Min B (2014) Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation. Int J Hydrogen Energ 39(19):10275–10283

    Article  CAS  Google Scholar 

  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Hong Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzy Microb Technol 30(2):145–152

    Article  CAS  Google Scholar 

  • Kim JR, Jung SH, Regan JM, Logan BE (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 98:2568–2577

    Article  CAS  Google Scholar 

  • Kouroussis D, Karimi S (2006) Alternative fuels in transportation. Bull Sci Technol Soc 26:346–355

    Article  Google Scholar 

  • Lefebvre O, Tan Z, Kharkwal S, Ng HY (2012) Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresour Technol 112:336–340

    Article  CAS  Google Scholar 

  • Lesnik K, Liu H (2014) Establishing a core microbiome in acetate-fed microbial fuel cells. Appl Microbiol Biotechnol 98(9):4187–4196

    Article  CAS  Google Scholar 

  • Li J, Liu LG, Zhang RD, Luo Y, Zhang CP, Li MC (2010a) Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants. Bioresour Technol 101:4013–4020

    Article  CAS  Google Scholar 

  • Li J, Liu LG, Zhang RD, Luo Y, Zhang CP, Li MC, Quan XC (2010b) Power generation from glucose and nitrobenzene degradation using the microbial fuel cell. Environ Sci 31:2811–2817

    CAS  Google Scholar 

  • Li LH, Sun YM, Yuan ZH, Kong XY, Li Y (2013) Effect of temperature change on power generation of microbial fuel cell. Environ Technol 34(13/14):1929–1934

    Article  CAS  Google Scholar 

  • Lithgow AM, Romero L, Sanchez IC, Souto FA, Vega CA (1986) Interception of electron-transport chain in bacteria with hydrophilic redox mediators. J Chem Res (S) 178–179

  • Liu S, Jiao X, Wang X, Zhang L (1996) Interaction of electron leak and proton leak in respiratory chain of mitochondria–proton leak induced by superoxide from an electron leak pathway of univalent reduction of oxygen. Sci China C Life Sci 39(2):168–178

    CAS  Google Scholar 

  • Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    Article  CAS  Google Scholar 

  • Logan BE (2008) Microbial fuel cells. John Wiley and Sons, New Jersey

    Google Scholar 

  • Luo H, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147:259–264

    Article  CAS  Google Scholar 

  • Luvisetto S, Schmehl I, Cola C, Azzone GF (1991) Tracking of proton flow during transition from anaerobiosis to steady state. 1. Response of matrix pH indicators. Euro J Biochem 202(1):113–120

    Article  CAS  Google Scholar 

  • Matos CT, da Silva TL (2012) Using multi-parameter flow cytometry as a novel approach for physiological characterization of bacteria in microbial fuel cells. Process Biochemistry Available online

  • Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073

    Article  CAS  Google Scholar 

  • Nicholls DG (1997) The non-Ohmic proton leak—25 years. Biosci Rep 17(3):251–257

    Article  CAS  Google Scholar 

  • Pant D, Singh A, Van Bogaert G, Irving Olsen S, Singh Nigam P, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263

    Article  CAS  Google Scholar 

  • Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292–1297

    Article  CAS  Google Scholar 

  • Peguin S, Soucaille P (1995) Modulation of carbon and electron flow in clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl Environ Microbiol 61:403–405

    CAS  Google Scholar 

  • Pisciotta JM, Zou Y, Baskakov IV (2011) Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria. Appl Microbiol Biotechnol 91(2):377–385

    Article  CAS  Google Scholar 

  • Poon K, Chung TC, Xu C, Wang R (2014) To investigate the correlation of proton leak and current produced from animal cells by microbial fuel cells. Am J Life Sci 2(3):176–181

    Article  Google Scholar 

  • Poon K, Liang L, Xu C, Wang R (2015) The use of microbial fuel cells to monitor the current production in Qi-deficient liver cells. J Tradit Chin Med (accepted)

  • Powell EE, Bolster JC, Hill GA, Evitts RW (2011) Microbial fuel cell with a photosynthetic microalgae cathodic half cell coupled to a yeast anodic half cell. Energy Sources 33:440–448

    Article  CAS  Google Scholar 

  • Prabhanand BS, Kombrabail MH (1996) H+, K+, and Na+ transport across phospholipid vesicular membrane by the combined action of proton uncoupler 2,4-dinitrophenol and valinomycin. Biochim Biophys Acta 1282(2):193–199

    Article  Google Scholar 

  • Qu YP, Feng Y, Wang X, Logan BE (2012) Use of a coculture to enable current production by Geobacter sulfurreducens. Appl Environ Microbiol 78(9):3484–3487

    Article  CAS  Google Scholar 

  • Rajesh PP, Noori MDT, Ghangrekar MM (2014) Controlling methanogenesis and improving power production of microbial fuel cell by lauric acid dosing. Water Sci Technol 70(8):1363–1369

    Article  CAS  Google Scholar 

  • Rashid N, Cui YF, Saif Ur Rehman M, Han JI (2013) Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci Total Environ 456–457:91–94

    Article  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348

    Article  CAS  Google Scholar 

  • Rieger D, McGowan LT, Cox SF, Pugh PA, Thompson JG (2002) Effect of 2,4-dinitrophenol on the energy metabolism of cattle embryos produced by in vitro fertilization and culture. Reprod Fertil Dev 14(5-6):339–343

    Article  CAS  Google Scholar 

  • Rupprecht A, Sokolenko EA, Beck V, Ninnemann O, Jaburek M, Trimbuch T, Klishin SS, Jezek P, Skulachev VP, Pohl EE (2010) Role of the transmembrane potential in the membrane proton leak. Biophys J 98(8):1503–1511

    Article  CAS  Google Scholar 

  • Sajana TK, Ghangrekar MM, Mitra A (2013) Effect of pH and distance between electrodes on the performance of a sediment microbial fuel cell. Water Sci Technol 68(3):537–543

    Article  CAS  Google Scholar 

  • Timmers R, Rothballer M, Strik D, Engel M, Schulz S, Schloter M, Hartmann A, Hamelers B, Buisman C (2012) Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell. Appl Microbiol Biotechnol 94:537–548

    Article  CAS  Google Scholar 

  • Timmers RA, Strik DPB, Hamelers HVM, Buisman CJN (2013) Increase of power output by change of ion transport direction in a plant microbial fuel cell. Int J Energ Res 37(9):1103–1111

    Article  CAS  Google Scholar 

  • Velasquez-Orta S, Curtis TP, Logan BE (2009) Energy from algae using microbial fuel cells. Biotechnol Bioeng 103:1068–1076

    Article  CAS  Google Scholar 

  • Walter XA, Greenman J, Ieropoulos IA (2014) Intermittent load implementation in microbial fuel cells improves power performance. Bioresour Technol 172:365–372

    Article  CAS  Google Scholar 

  • Winfield J, Chambers LD, Rossiter J, Greenman J, Ieropoulos I (2014) Towards disposable microbial fuel cells: natural rubber glove membranes. Int J Hydrogen Energ 39(36):21803–21810

    Article  CAS  Google Scholar 

  • Wu YC, Wang ZJ, Zheng Y, XiaoY YZH, Zhao F (2014) Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Appl Energy 116:86–90

    Article  CAS  Google Scholar 

  • Xu S, Liu H (2011) New exoelectrogen Citrobacter sp SX-1 isolated from a microbial fuel cell. J Appl Microbiol 111:1108–1115

    Article  CAS  Google Scholar 

  • Yu HY, Wang SJ, Cai ZW, Poon K (2012) Differential handling of toxic chemicals by stress shock algae. Int J Environ Pollut Remed 1:114–121

    Google Scholar 

  • Yuan Y, Zhou S, Xu N, Zhuang L (2011) Microorganism-immobilized carbon nanoparticle anode for microbial fuel cells based on direct electron transfer. Appl Microbiol Biotechnol 89(5):1629–1635

    Article  CAS  Google Scholar 

  • Zhang YJ, Sun CY, Liu XY, Han W, Dong YX, Li YF (2013) Electricity production from molasses wastewater in two-chamber microbial fuel cell. Water Sci Technol 68(2):494–498

    CAS  Google Scholar 

  • Zhen H, Jinjun K, Mansfeld F, Angenent L, Nealson KH (2009) Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ Sci Technol 43:1648–1654

    Article  Google Scholar 

  • Zheng J, Ramirez VD (2000) Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemical. Br J Pharmacol 130(5):1115–1123

    Article  CAS  Google Scholar 

  • Zhou M, He H, Jin T, Wang H (2012) Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. J Power Sources 214:216–219

    Article  CAS  Google Scholar 

  • Zhu N, Chen X, Zhang T, Wu P, Li P, Wu J (2011) Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresour Technol 102(1):422–426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the help of Gillespie S. Ma in maintaining the algal cell culture, the help of Jian Liu in helping some of the preliminary research work, and UIC College Research Grant R201315 for supporting this project.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihua Wang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Poon, K., Choi, M.M.F. et al. Using live algae at the anode of a microbial fuel cell to generate electricity. Environ Sci Pollut Res 22, 15621–15635 (2015). https://doi.org/10.1007/s11356-015-4744-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4744-8

Keywords

Navigation