Skip to main content

Advertisement

Log in

The energetic characterization of pineapple crown leaves

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Energetic characterization of biomass allows for assessing its energy potential for application in different conversion processes into energy. The objective of this study is to physicochemically characterize pineapple crown leaves (PC) for their application in energy conversion processes. PC was characterized according to ASTM E871-82, E1755-01, and E873-82 for determination of moisture, ash, and volatile matter, respectively; the fixed carbon was calculated by difference. Higher heating value was determined by ASTM E711-87 and ash chemical composition was determined by XRF. The thermogravimetric and FTIR analyses were performed to evaluate the thermal decomposition and identify the main functional groups of biomass. PC has potential for application in thermochemical processes, showing high volatile matter (89.5 %), bulk density (420.8 kg/m3), and higher heating value (18.9 MJ/kg). The results show its energy potential justifying application of this agricultural waste into energy conversion processes, implementing sustainability in the production, and reducing the environmental liabilities caused by its disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida MBB (2008) Bio-óleo a partir da pirólise rápida, térmica ou catalítica, da palha da cana-de-açúcar e seu co-processamento com gasóleo e craqueamento catalítico. Dissertation, Universidade Federal do Rio de Janeiro, Brazil

  • ASTM Standard E711-87. (1987) Standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter (ASTM), Philadelphia, USA.

  • ASTM Standard E871-82 (2006) Standard test method for moisture analysis of particulate wood fuels. Ameri can Society for Testing and Materials (ASTM), Philadelphia

    Google Scholar 

  • ASTM Standard E872-85 (2006) Standard test method for volatile matter in the analysis of particulate wood fuels. American Society for Testing and Materials (ASTM), Philadelphia

    Google Scholar 

  • ASTM Standard E873-82 (2006) Standard test method for bulk density of densified particulate biomass fuels. American Society for Testing and Materials (ASTM), Philadelphia

    Google Scholar 

  • ASTM Standard E1755-01 (2007) Standard test method for ash in biomass. American Society for Testing and Materials (ASTM), Philadelphia

    Google Scholar 

  • Braga RM (2012) Pirólise rápida catalítica do capim elefante utilizando materiais mesoporosos e óxidos metálicos para desoxigenação em bio-óleo. Thesis, Universidade Federal do Rio Grande do Norte, Brazil.

  • Braga RM, Costa TR, Freitas JCO, Barros JMF, Melo DMA, Melo MAF (2014a) Pyrolysis kinetics of elephant grass pretreated biomasses. J Therm Calorim Analysis 117:1341–1348

    Article  CAS  Google Scholar 

  • Braga RM, Melo DMA, Aquino FM, Freitas JCO, Melo MAF, Barros JMF, Fontes MSB (2014b) Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Calorim Analysis 115:1915–1920

    Article  CAS  Google Scholar 

  • Cortez LAB, Lora EES, Gómez EO (2008) Biomassa para energia. Editora da UNICAMP, Campinas

    Google Scholar 

  • Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–63

    Article  CAS  Google Scholar 

  • Empresa de Assistência Técnica e Extensão Rural (EMATER). 2012.

  • Escobar JF, Coelho ST (2013) Situação da Biomassa lignocelulósica no Brasil: Perspectivas para o uso dos pellets de madeira para os setores energo-intensivos. Jornal Biomassa BR 11:3

    Google Scholar 

  • Fagundes NS (2010) Restos culturais do abacaxizeiro na alimentação de ruminantes. Revista Eletronica Nutritime 7:1243–1247

    Google Scholar 

  • Ferreira ACH, Neiva JNM, Rodriguez NM (2009) Avaliação nutricional do subproduto da agroindústria de abacaxi como aditivo de silagem de capim-elefante. Rev Bras Zootec 38:223–229

    Article  Google Scholar 

  • García R, Pizarro C, Álvarez A, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258

    Article  Google Scholar 

  • García R, Pizarro C, Álvarez A, Lavín AG, Bueno JL (2015) Study of biomass combustion wastes. Fuel 148:152–159

    Article  Google Scholar 

  • Instituto de Pesquisa Econômica Aplicada (IPEA). (2012) IPEA, Brasília

  • Kucukbayrak S, Durus B, Mericboyu AE, Kadioglu E (1991) Estimation of calorific values of Turkish lignites. Fuel 70:979–81

    Article  CAS  Google Scholar 

  • Macedo IC. (2001) Geração de energia elétrica a partir de biomassa no Brasil: situação atual, oportunidades e desenvolvimento. Centro de Gestão e Estudos Estratégicos.

  • Mayer Z, Apfelbacher A, Hornung A (2012) Effect of sample preparation on the thermal degradation of metal-added biomass. J Anal Appl Pyrolysis 94:170–176

    Article  CAS  Google Scholar 

  • Mckendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  CAS  Google Scholar 

  • NBR NM 248. (2003) Agregados – Determinação da composição granulométrica. Associação brasileira de Normas Técnicas (ABNT).

  • Oh SY, Yoo DII, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  Google Scholar 

  • Parikh J, Channiwala SA, Ghosal GK (2005) A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84:487–94

    Article  CAS  Google Scholar 

  • Pereira AF, Melo PGS, Pereira JM, Assunção A, Nascimento AR, Ximenes PA (2009) Agronomic and nutritional characters of genotypes of sweet corn. Biosci J 25(1):104–112

    Google Scholar 

  • Protásio TP, Bufalino L, Tonoli GHD, Couto AM, Trugilho PF, Júnior MG (2011) Relação entre o poder calorífico superior e os componentes elementares e minerais da biomassa vegetal. Pesq Flor Bras Colombo 31:113–122

    Article  Google Scholar 

  • Queiroz, MB, Ferreira MMC, Rambo MKD (2014) Correlação entre o poder calorífico e a composição química de biomassas lignocelulósicas. In: 37ª Reunião Anual da Sociedade Brasileira de Química, Brazil.

  • Raveendran K, Ganesh A, Khilar KC (1996) Pyrolysis characteristics of biomass and biomass components. Fuel 75:987–998

    Article  CAS  Google Scholar 

  • Reinhardt DHRC, Medina VM (1992) Crescimento e qualidade do fruto do abacaxi CVS. Pérola e smooth cayenne. Pesq Agrop Brasileira 27:435–447

    Google Scholar 

  • Soest VPJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds. IV Determination of plant cell-wall constituents

  • Souto RF, Durigan JF, Santos LO, Souza BS, Menegucci JLP (2010) Características químicas de abacaxi ‘Pérola’ após tratamento com calor e armazenagem em três temperaturas. Rev Bras Frutic 32:047–056

    Article  Google Scholar 

  • Sipião BLS, Paiva RLM, Goulart SAS, Mulinari DR (2011) Effect of chemical modification on mechanical behaviour of polypropylene reinforced pineapple crown fibers composites. Procedia

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yin CY (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90:1128–1132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support, LabTam/NUPPRAR/UFRN for facilities, and Laboratório de Nutrição Animal - UFRN for ADF and NDF analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Braga.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, R.M., Queiroga, T.S., Calixto, G.Q. et al. The energetic characterization of pineapple crown leaves. Environ Sci Pollut Res 22, 18987–18993 (2015). https://doi.org/10.1007/s11356-015-5082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5082-6

Keywords

Navigation