Skip to main content

Advertisement

Log in

Pinus sylvestris as a bio-indicator of territory pollution from aluminum smelter emissions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The study demonstrates the efficiency of using Pinus sylvestris L. as a bio-indicator of polluting substances that enter the environment with the emission of a large aluminum smelter. Recent research has demonstrated that pollution from aluminum smelter emissions covers a vast territory. The highest content of polluting elements is registered at a distance of 3 km from the smelter, with maximum concentrations found in the industrial zone (0.5 km from the smelter). The farther from the aluminum smelter, the lower the amount of polluting elements in the needles, although the F level still exceeds the background values at a distance of about 60 km from the source, the levels of Zn, Pb, and Cd up to 50 km, S up to 40 km, and Fe and Cu up to 35 km mostly in north-eastern and south-eastern directions correlating with prevailing atmospheric transfer of the emissions. Pollution with polycyclic aromatic hydrocarbons (PAHs) is also most expressed at a distance of 3 km from the smelter, then it gradually decreases to coincide with background concentrations at a distance of more than 60 km. This is confirmed by changes in overall PAH content and in qualitative and quantitative compositions of individual PAHs. The greatest number of components (17 substances) has been found in samples from the territory of the plant area: phenanthrene, fluoranthene, pyrene, chrysene, acenaphthylene, acenaphthene, anthracene, fluorene, benz[а]anthracene, benz[b]fluoranthene, benz[k]fluoranthene, benz[а]pyrene, benz[е]pyrene, perylene, indeno[1,2,3-c,d]pyrene, benz[g,h,i]perylene, and dibenz[a,h]anthracene. The farther away from the plant, the lower the number of components detected in PAH fraction, mainly due to the fact that the concentrations of most toxic PAHs with five or six aromatic rings (benz[b]fluoranthene, benz[k]fluoranthene, benz[а]pyrene, benz[е]pyrene, perylene, indeno[1,2,3-c,d]pyrene, benz[g,h,i]perylene, dibenz[a,h]anthracene) fall below the method detection limit. High concentrations of benz[а]pyrene and perylene in pine needles at the territories adjacent to the aluminum smelter confirm the technogenic character of forest pollution by PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arguchintsev VK, Arguchintseva AV, Kreysik MA (2001) Assessment of impact on the lake Baikal regional sources of air industrial emissions. Atmos Ocean Opt 14(3):216–218

    Google Scholar 

  • Arnesen AKM, Abrahamsen G, Sandyik G, Krogstad T (1995) Aluminium-smelters and fluoride pollution of soil and soil solution in Norway. Sci Total Environ 163(1–3):39–53. doi:10.1016/0048-9697(95)04479-K

    Article  CAS  Google Scholar 

  • Awang MB, Mikhailova TA, Luangjame J, Carandang W, Mizoue N, Yamamoto K, Sase H, Takahashi A, Hakamata T, Boonpragob K, Insarov G, Tanikawa H, Nakashima A, Totsuka T (2007) Sub-manual on forest vegetation monitoring in EANET. Network center for EANET. Acid Deposition and Oxidant Research Center (ADORC), Niigata

    Google Scholar 

  • Bezel VS, Zhuykova TV (2007) Chemical pollution: transfer of chemical elements to the aboverground phytomass of herbaceous plants. Russian J Ecol 38(4):238–246

    Article  CAS  Google Scholar 

  • Bonte I, Cantuel I (1981) Pollution par les pouasieres de goudrons emises au cours de la fabrication de l’aluminium: etude des inumescences observees chez les vegetaux. Phutiat-phyto-pharm 30(2):71–77

    CAS  Google Scholar 

  • Bostrom CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Victorin K, Westerholm R (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110:451–488

    Article  CAS  Google Scholar 

  • Brougham KM, Roberts SR, Davison AW, Port GR (2013) The impact of aluminium smelter shut-down on the concentration of fluoride in vegetation and soils. Environ Pollut 178:89–96

    Article  CAS  Google Scholar 

  • Chropeňová M, Gregušková EK, Karásková P, Přibylová P, Kukučka P, Baráková D, Čupr P (2016) Pine needles and pollen grains of Pinus mugo Turra—a biomonitoring tool in high mountain habitats identifying environmental contamination. Ecol Indic 66:132–142. doi:10.1016/j.ecolind.2016.01.004

    Article  Google Scholar 

  • Climate Bratsk (1985) Leningrad, Gidrometeoizdat (in Russian)

  • Cretney WJ, Wong CS, Macdonald RW, Erickson PE, Fowler BR (1982) Polycyclic aromatic hydrocarbons in surface sediments and age-dated cores from Kitimat Arm, Douglas Channel and adjoining waterways. In: Macdonald, R.W. (ed.) Proceedings of a Workshop on the Kitimat Marine Environment. Canad Data Report of Hydrography and Ocean Sci 18:163–194

  • Dalgaard P (2008) Introductory statistics with R. Springer Science Business Media

  • De Vries W, Reinds GJ, van Kerkvoorde MS, Hendriks CMA, Leeters EEJM, Gross CP, Voogd JCH, Vel EM (2000) Intensive monitoring of forest ecosystems in Europe, Technical Report. UN/ECE, Geneva

    Google Scholar 

  • Dessler H (ed) (1981) Impact of air pollution on vegetation. Moscow, Forest industry (in Russian)

    Google Scholar 

  • Divan Junior AM, Oliva MA, Ferreira FA (2008) Dispersal pattern of airborne emissions from an aluminium smelter in Ouro Preto, Brazil, as expressed by foliar fluoride accumulation in eight plant species. Ecol Indic 8:454–461. doi:10.1016/j.ecolind.2007.04.008

    Article  Google Scholar 

  • Dmuchowski W, Gozdowski D, Baczewska AH (2011) Comparison of four bioindication methods for assessing the degree of environmental lead and cadmium pollution. J Hazard Mater 197:109–118

    Article  CAS  Google Scholar 

  • Dunlap CE, Steinnes E, Flegal AR (1999) A synthesis of lead isotopes in two millennia of European air. Earth Planet Sci Lett 167:81–88. doi:10.1016/S0012-821X(99)00020-5

    Article  CAS  Google Scholar 

  • Environmental Geochemistry (1990) Moscow, Nedra (in Russian)

  • Evdokimova GA, Mozgova NP (2015) Assessment of soil and plant contamination in the affected area gas emissions aluminum smelter. Theor Appl Ecol 4:64–68 (in Russian)

    Google Scholar 

  • Geography of RUSAL (2016) http://www.rusal.ru/en/about/geography/index.php. Accessed 26 October 2016

  • Gorshkov AG (2008) Determination of polycyclic aromatic hydrocarbons in the needles of a Scotch pine (Pinus sylvestris L.) a biomonitor of atmospheric pollution. J Anal Chem 63(8):805–811. doi:10.1134/S1061934808080169

    Article  CAS  Google Scholar 

  • Grimalt JO, van Drooge BL, Ribes A, Fernandez P, Appleby P (2004) Polycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes. Environ Pollut 131:13–24. doi:10.1016/j.envpol.2004.02.024

    Article  CAS  Google Scholar 

  • Guderian P (1979) Air pollution. Mir, Moscow (in Russian)

    Google Scholar 

  • Johnson LL, Ylitalo GM, Myers MS, Anulacion BF, Buzitis J, Collier TK (2015) Aluminum smelter-derived polycyclic aromatic hydrocarbons and flatfish health in the Kitimat marine ecosystem, British Columbia, Canada. Sci Total Environ 512-513:227–239. doi:10.1016/j.scitotenv.2015.01.017

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC press, Boca Raton

    Google Scholar 

  • Kasala ER, Bodduluru LN, Barua CC, Sriram CS, Gogoi R (2015) Benzo(a)pyrene induced lung cancer: role of dietary phytochemicals in chemoprevention. Pharmac Rep 67:996–1009

    Article  CAS  Google Scholar 

  • Khodzher TV, Gorshkov AG, Potemkin VL, Obolkin VA (1999) The composition of aerosol over the East Siberia. J Aerosol Sci 30(1):271–272

    Article  Google Scholar 

  • Koblar A, Tavčar G, Ponikvar-Svet M (2011) Effects of airborne fluoride on soil and vegetation. J Fluor Chem 132:755–759. doi:10.1016/j.jfluchem.2011.05.022

    Article  CAS  Google Scholar 

  • Kulikov BP, Storozhev YI (2012) Dust and gas emissions of aluminum electrolyzers with self-baking anodes. Siberian Federal University, Krasnoyarsk (in Russian)

    Google Scholar 

  • Lehndorff E, Schwark L (2008) Accumulation histories of major and trace elements on pine needles in the Cologne Conurbation as function of air quality. Atmos Environ 42:833–845. doi:10.1016/j.atmosenv.2007.10.025

    Article  CAS  Google Scholar 

  • Lombardo M, Melati RM, Orecchio S (2001) Assessment of the quality of the air in the city of Palermo through chemical and cell analyses on Pinus needles. Atmos Environ 35:6435–6445. doi:10.1016/S1352-2310(01)00348-X

    Article  CAS  Google Scholar 

  • Louback E, Pereira TAR, de Souzab SR, de Oliveira JA, da Silvaa LC (2016) Vegetation damage in the vicinity of an aluminum smelter in Brazil. Ecol Indic 67:193–203. doi:10.1016/j.ecolind.2016.02.044

    Article  CAS  Google Scholar 

  • Luch A (2005) The carcinogenic effects of polycyclic aromatic hydrocarbons. Imperial College Press, London

    Book  Google Scholar 

  • Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests (2010) UNECE, ICP Forests Programme Coordinating Centre. http://www.icp-forests.org/Manual.htm/ Accessed 15 September 2016

  • Martin SC, Lariviere C (2014) Community health risk assessment of primary aluminum smelter emissions. JOEM 56(5S):33–39. doi:10.1097/JOM.0000000000000135

    Google Scholar 

  • McKillup S (2011) Statistics explained. An introductory guide for life scientists. Cambridge University Press

  • Methods of studying forest communities (2002) Saint-Peterburg, Petersburg State University Research Institute of Chemistry (in Russian)

  • Mikhailova TA (2000) The physiological condition of pine trees in the Prebaikalia (East Siberia). Forest Pathol 30:345–359

    Article  Google Scholar 

  • Mikhailova TA, Kalugina OV, Shergina OV (2013) Phytomonitoring of air pollution in the Baikal region. Contemp Probl Ecol 6(5):549–554

    Article  Google Scholar 

  • Miller GW (1993) The effect of fluoride on higher plants. Fluoride 26:3–22

    CAS  Google Scholar 

  • Näf C, Broman D, Axelman J (1994) Characterization of the PAH load outside an aluminium smelter on the Swedish Baltic coast. Sci Total Environ 156:109–118. doi:10.1016/0048-9697(94)90347-6

    Article  Google Scholar 

  • Nilsen AM, Vik R, Behrens C, Drabløs PA, Espevik T (2010) Beryllium sensitivity among workers at a Norwegian aluminum smelter. Am J Indust Medic 53:724–732. doi:10.1002/ajim.20816

    CAS  Google Scholar 

  • Notcutt G, Davies F (2001) Environmental accumulation of airborne fluorides in Romania. Environ Geochem Health 23(1):43–51

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of world wide contamination of air, water and soil by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Petrela J, Câmara VM, Kennedy G, Bouyahi B, Zayed J (2001) Health effects of residential exposure to aluminum plant air pollution. Arch Environ Health 56(5):456–460

    Article  CAS  Google Scholar 

  • Pöykiö R, Hietala J, Nurmesniemi H (2010) Scots pine needles as bioindicators in determining the aerial distribution pattern of sulphur emissions around industrial plants. Int J Environ Chem Ecol Geol Geoph Engin 4(8):311–314

    Google Scholar 

  • Proidakova OA, Vasil’eva IE (2010) Method to improve schemes of sample preparation and Atomic_Absorption analysis of geochemical samples. Inorg Mater 46(14):1503–1512

    Article  CAS  Google Scholar 

  • Ratola N, Amigo JM, Oliveira MSN, Araujo R, Silva JA, Alves A (2011) Differences between Pinus pinea and Pinus pinaster as bioindicators of polycyclic aromatic hydrocarbons. Environ Experim Bot 72:339–347. doi:10.1016/j.envexpbot.2011.04.012

    Article  CAS  Google Scholar 

  • Rautio P, Huttunen S (2003) Total vs. internal element concentrations in Scots pine needles along a sulphur and metal pollution. Environ Pollut 122:273–289. doi:10.1016/S0269-7491(02)00289-0

    Article  CAS  Google Scholar 

  • Real C, Aboal JR, Fernández JA, Carballeira A (2003) The use of native mosses to monitor fluorine levels and associated temporal variations in the vicinity of an aluminium smelter. Atmos Environ 37:3091–3102. doi:10.1016/S1352-2310(03)00294-2

    Article  CAS  Google Scholar 

  • Reimann C, Koller F, Kashulina G, Niskavaara H, Englmaier P (2001) Influence of extreme pollution on the inorganic chemical composition of some plants. Environ Pollut 115:239–252. doi:10.1016/S0269-7491(01)00106-3

    Article  CAS  Google Scholar 

  • Rey-Asensio A, Carballeira A (2007) Lolium perenne as a biomonitor of atmospheric levels of fluoride. Environ Internat 33:583–588

  • Rodriguez JH, Wannaz ED, Salazar MJ, Pignata ML, Fangmeier AJ, Franzaring J (2012) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the tree foliage of Eucalyptus rostrata, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina. Atmos Environ 55:35–42. doi:10.1016/j.atmosenv.2012.03.026

    Article  CAS  Google Scholar 

  • Rozhkov AS, Mikhailova TA (1993) The effects of fluorine-containing emissions on conifers. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Sanina NB, Proidakova OA (2006) Heavy metals in soil of the Baikal biosphere reserve (in connection with degradation of fir forests of the Northern macroslope of Khamar-Daban Range). Chin J Geochem 25(S):191

    Article  Google Scholar 

  • Schubert R (ed) (1988) Bioindication of terrestrial ecosystems pollution. Mir, Moscow (in Russian)

    Google Scholar 

  • Shipunov A. and et. al. (2016). Visual statistics. Use R. version 2016. http://ashipunov.info/shipunov/school/biol_240/en/. Accessed 14 September 2016

  • State report "On the state and Environmental Protection of the Irkutsk region in 2014" (2015) Irkutsk, Forward (in Russian)

  • Suzdorf AR, Morozov SV, Kuzubova LI, Anshits NN, Anshits AG (1994) Polycyclic aromatic hydrocarbons in the environment: sources, profiles and conversion routes. Chem Sustain Develop 2:511–540 (in Russian)

    Google Scholar 

  • Thrane KE (1987) Ambient air concentrations of polycyclic aromatic hydrocarbons, fluoride, suspended particles and particulate carbon in areas near aluminium production plants. Atmos Environ 21:617–628. doi:10.1016/0004-6981(87)90044-8

    Article  CAS  Google Scholar 

  • Trofimova IE, Bufal VV, Gustokashina NN (2004) Сonditions of the formation of air quality in urbanized systems of the south-eastern side. Contemp Probl Ecol 1:9–17

    Google Scholar 

  • Ukraintseva VV (1991) Flowering plants—reliable indicators and biomonitor the state of the environment. Biotesting in solving ecological problems, Saint-Peterburg (in Russian)

    Google Scholar 

  • Van Drooge BL, Fernandez P, Grimalt JO, Stuchlik E, Garcia CJT, Cuevas E (2010) Atmospheric polycyclic aromatic hydrocarbons in remote European and Atlantic sites located above the boundary mixing layer. Environ Sci Pollut Res 17:1207–1216. doi:10.1007/s11356-010-0296-0

    Article  Google Scholar 

  • Van Drooge BL, Garriga G, Grimalt JO (2014) Polycyclic aromatic hydrocarbons in pine needles (Pinus halepensis) along a spatial gradient between a traffic intensive urban area (Barcelona) and a nearby natural park. Atmos Pollut Res 5:398–403

    Article  CAS  Google Scholar 

  • Vike E (1999) Air-pollutant dispersal patterns and vegetation damage in the vicinity of three aluminium smelters in Norway. Sci Total Environ 236:75–91. doi:10.1016/S0048-9697(99)00268-5

    Article  CAS  Google Scholar 

  • Vike E, Hǎbjorg A (1995) Variation in fluoride content and leaf injury on plants associated with three aluminium smelters in Norway. Sci Total Environ 163(1–3):25–34. doi:10.1016/0048-9697(95)04497-O

    Article  CAS  Google Scholar 

  • Wehrmann J (1963) Möglichkeiten und Grenzen der Blattanalyse in der Forstwirtschaft. Landwirtsch Forsch 16(2):130–145

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian government program No. 52.1.10 and the Russian Foundation of the Basic Research, research project No. 12-04-31036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Vladimirovna Kalugina.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalugina, O.V., Mikhailova, T.A. & Shergina, O.V. Pinus sylvestris as a bio-indicator of territory pollution from aluminum smelter emissions. Environ Sci Pollut Res 24, 10279–10291 (2017). https://doi.org/10.1007/s11356-017-8674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8674-5

Keywords

Navigation