Skip to main content
Log in

Biosorption of dysprosium (III) using raw and surface-modified bark powder of Mangifera indica: isotherm, kinetic and thermodynamic studies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this paper, we have used HDTMA-Br- and NaOH-treated bark powder of Mangifera indica as bio-sorbents for the removal of dysprosium (III) from its aqueous solution. The adsorption process was investigated at different experimental parameters such as contact time, temperature, pH, adsorbent dose, and initial metal concentration. The amount of chemically modified bark powder required was almost two times lesser than raw bark to get a higher percentage removal of the metal ion. The kinetics results revealed the adsorption process follows the nonlinear form a pseudo-second-order model. The negative values of Gibbs free energy change (∆G°) indicated the spontaneity of the adsorption process. The enthalpy change (∆H°) and entropy change (∆S°) of adsorption were 60.97 kJ/mol and 0.48 J/mol K, respectively signified it as an endothermic process. The maximum adsorption capacity was found to be 55.04 mg/g for sorption of Dy (III) on NaOH-treated bark powder and was better fitted to Langmuier model. It was confirmed to follow physisorption process and the activation energy of the system was found to be 41.07 kJ/mol. The possibility of adsorbent and adsorbate interactions were indicated by the FTIR and SEM/EDX analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aghayan H, Mahjoub AR, Khanchi AR (2013) Samarium and dysprosium removal using 11-molybdo-vanadophosphoric acid supported on Zr modified mesoporous silica SBA-15. 225, 509–519

  • Ai L, Li M, Li L (2011) Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms and thermodynamics. J Chem Eng Data 56:3475–3483

    Article  CAS  Google Scholar 

  • Arenas LT, Lima ES, dos Santos AA Jr, Vaghetti JCP, Costa TMH, Benvenutti EV (2007) Use of statistical design of experiments to evaluate the sorption capacity of 1 4-diazoniabicycle [2. 2. 2] octane/silica chloride for Cr(VI) adsorption. Colloid Surf A 297:240–248

    Article  CAS  Google Scholar 

  • Argun ME, Dursun S, Ozdemir C (2007) Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater 141:77–85

    Article  CAS  Google Scholar 

  • Barrat JA, Keller F, Amosse J, Taylor RN (1996) Determination of rare earth elements in sixteen silicate reference samples by ICP-MS after TM addition and ion exchange separation. Geostand Geoanal Res 20:133–139

    Article  CAS  Google Scholar 

  • Bonificio W, Clarke DR (2016) Rare-earth separation using bacteria. Environ Sci Technol Lett 14:180–184

    Article  CAS  Google Scholar 

  • Boparai HK, Joseph M, Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465

    Article  CAS  Google Scholar 

  • Dabrowski A (2001) Adsorption-from theory to practice. Adv Colloid Interf Sci 93:135–224

    Article  CAS  Google Scholar 

  • Du X, Graedel TE (2011) Global in-use stocks of the rare earth elements: a first estimate. Environ Sci Technol 45:4096–4101

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Fritz JS, Richard MJ, Lane WJ (1958) Spectrophotometric determination of rare earths. Anal Chim Acta 30:1777–1779

    Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  • Grebreva ON, Kuzmin NM, Tsysin GI, Zolotov YA (1996) On-line-sorption preconcentration and inductively coupled plasma atomic emission spectrometry determination of rare earth elements. Spectrochim Acta 51B:1417–1427

    Article  Google Scholar 

  • Gunay A, Arslankaya E, Tosun I (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J Hazard Mater 146:362–371

    Article  CAS  Google Scholar 

  • He S, Zhou Y, Gu Z, Xie S (2009) Adsorption of two cationic dyes from aqueous solution onto natural attapulgite. 3rd Int Conf Bioinformatics Biomed Eng (Icbbe) 11–13

  • Ho YS, Mckay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  • Hoenderdaal S, Espinoza LT, Weidemann FM, Graus W (2013) Can a dysprosium shortage threaten green energy technologies? Energy 49:344–355

    Article  Google Scholar 

  • Jacques RA, Bernardi R, Caovila M, Lima EC, Pavan FA, Vaghetti JCP, Airoldi C (2007) Removal of Cu(II) Fe(III) and Cr(III) from aqueous solution by aniline grafted silica gel. Sep Sci Technol 42:591–609

    Article  CAS  Google Scholar 

  • Kao WC, Wu JY, Chang CC, Chang JS (2009) Cadmium biosorption by polyvinylalcohol immobilized recombinant Escherichia coli. J Hazard Mater 169:651–658

    Article  CAS  Google Scholar 

  • Koochaki-Mohammadpour SMA, Torab-Mostaedi M, Talebizadeh-Rafsanjani A, Naderi-Behdani F (2014) Adsorption isotherm, kinetic, thermodynamic, and desorption studies of lanthanum and dysprosium on oxidized multiwalled carbon nanotubes. J Dispers Sci Technol 35:244–254

    Article  CAS  Google Scholar 

  • Kumar KV (2007) Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel. Dyes Pigments 74:595–567

    Article  CAS  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Sven Vetenskapsakad Handl 24:1–39

    Google Scholar 

  • Loukidoua MX, Matisa KA, Zouboulisa AI (2003) Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Res 37:4544–4552

    Article  CAS  Google Scholar 

  • Lu DD, Cao QL, Cao XJ, Luo F (2009) Removal of Pb (II) using the modified lawny grass: mechanism, kinetics, equilibrium and thermodynamic studies. J Hazard Mater 166:239–247

    Article  CAS  Google Scholar 

  • Lu L, Chen L, Shao W, Luo F (2010) Equilibrium and kinetic modeling of Pb(II) biosorption by a chemically modified orange peel containing Cyanex 272. J Chem Eng Data 55:4147–4153

    Article  CAS  Google Scholar 

  • Milonjic SK (2007) A consideration of the correct calculation of thermodynamic parameters of adsorption. J Serb Chem Soc 72(12):1363–1367

    Article  CAS  Google Scholar 

  • Mishra V, Balomajumder C, Agarwal VK (2010) Biosorption of Zn (II) onto the surface of non-living biomasses: a comparative study of adsorbent particle size and removal capacity of three different biomasses. Water Air Soil Pollut 211:489–500

    Article  CAS  Google Scholar 

  • Oliveira RC, Garcia OJ (2009) Study of biosorption of rare earth metals (La, Nd, Eu, Gd) by Sargassum sp. biomass in batch systems: physicochemical evaluation of kinetics and adsorption models. Adv Mater Res 71:605–608

    Article  Google Scholar 

  • Philip L, Iyengar L, Venkobachar C (2000) Biosorption of U, LA, Pr, Nd, Eu, Dy by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 25:1–7

    Article  CAS  Google Scholar 

  • Ponou J, Wang LP, Dodbiba G, Matuo S, Okaya K, Fujita T (2014) Recovery of dysprosium ions by biosorption-desorption onto organic plants wastes. Int J Soc Mater Eng Resour 20:141–146

    Article  CAS  Google Scholar 

  • Reed BE, Matsumoto MR (1993) Modeling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions. Sep Sci Technol 28:2179–2195

    Article  CAS  Google Scholar 

  • Roychowdhury P, Roy NK, Das DK (1989) Determination of rare-earth elements and yttrium in silicate rocks by sequential inductively-coupled plasma emission spectrometry. Talanta 36:1183–1186

    Article  CAS  Google Scholar 

  • Saha R, Saha B (2014) Removal of hexavalent chromium from contaminated water by adsorption using mango leaves (Mangifera indica). Desalin Water Treat 52:1928–1936

    Article  CAS  Google Scholar 

  • Srivastava R, Rupaniwar DC (2011) A comparative evaluation of adsorption of dye on Neem and Mango bark powder. Indian J Chem Technol 18:67–75

    CAS  Google Scholar 

  • Uzum C, Shahwan T, Eroglu AE, Hallam KR, Scott TB, Lieberwirth I (2009) Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl Clay Sci 43:172–181

    Article  CAS  Google Scholar 

  • Vaghetti JCP, Lima EC, Royer B, Brasil JL, Cunha BM, Simona NM, Cardoso NF (2008) Application of Brazilian-pine fruit coat as a biosorbent to removal of Cr(VI) from aqueous solution - kinetics and equilibrium study. Biochem Eng J 42:67–76

    Article  CAS  Google Scholar 

  • Vermeulan TH, Vermeulan KR, Hall LC (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem 5:212–223

    Google Scholar 

  • Vimala R, Das N (2009) Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. J Hazard Mater 168:376–382

    Article  CAS  Google Scholar 

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216

    Article  CAS  Google Scholar 

  • Voudrias E, Fytianos F, Bozani E (2002) Sorption description isotherms of dyes from aqueous solutions and waste waters with different sorbent materials. Global Nest J 4:75–83

    Google Scholar 

  • Wang F, Zhao J, Pan F, Zhou H, Yang X, Li W, Liu H (2013) Adsorption properties towards trivalent rare earths by alginate beads doping with silica. Ind Eng Chem Res 52:3453–3461

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ Eng 89:31–37

    Google Scholar 

  • Weiss D, Paukert T, Rubeska I (1990) Determination of rare earth elements and yttrium in rocks by inductively coupled plasma atomic emission spectrometry after separation by organic solvent extraction. J Anal At Spectrom 5:371–375

    Article  CAS  Google Scholar 

  • Xu S, Boyd S (1995) Cationic surfactant sorption to a vermiculitic subsoil via hydrophobic boding. Environ Sci Technol 29:312–320

    Article  CAS  Google Scholar 

  • Yang CH (1998) Statistical mechanical study on the freundlich isotherm eq. J Colloid Interface Sci 208:379–387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Director, CSIR-IMMT, Bhubaneswar for providing the facilities to carry out this work and CSIR for funding the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravat Manjari Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, A.P., Mishra, P.M. Biosorption of dysprosium (III) using raw and surface-modified bark powder of Mangifera indica: isotherm, kinetic and thermodynamic studies. Environ Sci Pollut Res 26, 6545–6556 (2019). https://doi.org/10.1007/s11356-018-04098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-04098-7

Keywords

Navigation