Skip to main content

Advertisement

Log in

Potentially useful elements (Al, Fe, Ga, Ge, U) in coal gangue: a case study in Weibei coal mining area, Shaanxi Province, northwestern China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Coal gangue has become one of the largest industrial solid waste in China, but it is also a kind of reserve resources. Representative coal gangue samples from different coal mines (mainly in Permo-Carboniferous and Jurassic) in Weibei area in Shaanxi Province are collected, and potentially useful elements (Al, Fe, Ga, Ge, U) in coal gangue are analyzed. The results show that the reserves of Al and Fe in Chinese coal gangue are 262 million tons and 196 million tons, respectively, based on the geometric mean values of Al2O3 (15.18%, weight percent) and Fe2O3 (6.24%, weight percent). Meanwhile, the crude reserves estimation of Ga, Ge, and U are 55,282, 6867, and 32,981 tons, respectively, based on the weighted mean contents of Ga, Ge, and U in coal gangue at 17.55, 2.18, and 10.47 mg/kg, respectively. Furthermore, Ga and Al contents in quite a large number of coal gangue mines exceed the cutoff value, which has a prospect of development and utilization from coal gangue. The policy implications from this study may include that (1) recycling of useful elements in Chinese coal gangue should be treated as an integral part of sustainable development with professional legislations and (2) establishing a basic database of coal gangue and authoritative system with relevant departments for solid waste management may effectively improve comprehensive utilization of coal gangue in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahrens LH (1954) The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary). Geochim Cosmochim Acta 5:49–73

    Article  CAS  Google Scholar 

  • Akdemir Ü, Sönmez İ (2003) Investigation of coal and ash recovery and entrainment in flotation. Fuel Process Technol 82:1–9. https://doi.org/10.1016/S0378-3820(02)00248-5

    Article  CAS  Google Scholar 

  • Bezdek RH, Wendling RM (2013) The return on investment of the clean coal technology program in the USA. Energy Policy 54:104–112

    Article  Google Scholar 

  • Bian Z, Dong J, Lei S, Leng H, Mu S, Wang H (2009) The impact of disposal and treatment of coal mining wastes on environment and farmland. Environ Geol 58:625–634. https://doi.org/10.1007/s00254-008-1537-0

    Article  CAS  Google Scholar 

  • Chen WM, Zhang ZS (1993) Coal chemistry. Coal Industry Press, Beijing (in Chinese)

    Google Scholar 

  • Committee Office of the National Mineral Reserves (CONMR).(1987) Reference manual for the requirements of industrial mineral ores. Beijing: Geological Press; . (in Chinese)

  • Ding W, Huang Z, Zhou J, Jing GU (2011) Evaluation on comprehensive utilization of trace elements from coal gangue in Shuicheng, Guizhou. Acta Mineral Sin 31:502–508 (in Chinese with English abstract)

    Google Scholar 

  • Doyle WS (1976) Deep coal mining: waste disposal technology. Noyes Data Corp, Park Ridge

    Google Scholar 

  • Eary LE, Rai D, Mattigod SV, Ainsworth CC (1990) Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: II. Review of the minor elements. J Environ Qual 19:202–214

    Article  CAS  Google Scholar 

  • Edgar TF (1983) Coal processing and pollution control. [Glossary included]. Gulf Publishing Company, Houston

    Google Scholar 

  • Fahlquist H, Noreus D, Callear S, David WI, Hauback BC (2011) Two new cluster ions, Ga [GaH3] 45–with a neopentane structure in Rb8Ga5H15 and [GaH2] nn–with a polyethylene structure in Rb n (GaH2) n, represent a new class of compounds with direct Ga–Ga bonds mimicking common hydrocarbons. J Am Chem Soc 133:14574–14577

    Article  CAS  Google Scholar 

  • Fan G, Zhang D, Wang X (2014) Reduction and utilization of coal mine waste rock in China: a case study in Tiefa coalfield. Resour Conserv Recycl 83:24–33. https://doi.org/10.1016/j.resconrec.2013.12.001

    Article  Google Scholar 

  • Fang Z, Gesser HD (1996) Recovery of gallium from coal fly ash. Hydrometallurgy 41:187–200

    Article  Google Scholar 

  • Finkelman RB (1993) Trace and minor elements in coal. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications. Springer US, Boston, MA, pp 593–607

    Chapter  Google Scholar 

  • Font O, Querol X, López-Soler A, Chimenos JM, Fernández AI, Burgos S, Peña FG (2005) Ge extraction from gasification fly ash. Fuel 84:1384–1392

    Article  CAS  Google Scholar 

  • Geng Y, Zhu Q, Haight M (2007) Planning for integrated solid waste management at the industrial park level: a case of Tianjin, China. Waste Manag 27:141–150. https://doi.org/10.1016/j.wasman.2006.07.013

    Article  Google Scholar 

  • Gu Q (1997) Composition and utilization of gangue in China. China Min Mag 6:14–16 (in Chinese)

    Google Scholar 

  • Huang, W., Zhao, J., 2002. Germanium and gallium in coal of China. Coal Geol China 64–69. (in Chinese with English abstract)

  • Ketris MP, Yudovich YE (2009) Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals. Int J Coal Geol 78:135–148. https://doi.org/10.1016/j.coal.2009.01.002

    Article  CAS  Google Scholar 

  • Kong H (2009) Analysis of gangue characteristics and comprehensive utilization in Bijie prefecture. Guizhou Province Coal Geol China 5:11 (in Chinese with English abstract)

    Google Scholar 

  • Li Q, Sun GN (2007) Synopsis of regenerative utilization ways of coal gangue resource in China. Fly Ash Compr Util 3:51–53 (in Chinese with English abstract)

    Google Scholar 

  • Li X, Xiao R (2017) Analyzing network topological characteristics of eco-industrial parks from the perspective of resilience: a case study. Ecol Indic 74:403–413. https://doi.org/10.1016/j.ecolind.2016.11.031

    Article  Google Scholar 

  • Li C, Wan J, Sun H, Li L (2010) Investigation on the activation of coal gangue by a new compound method. J Hazard Mater 179:515–520. https://doi.org/10.1016/j.jhazmat.2010.03.033

    Article  CAS  Google Scholar 

  • Liang Y, Liang H, Zhu S (2016) Mercury emission from spontaneously ignited coal gangue hill in Wuda Coalfield, Inner Mongolia, China. Fuel 182:525–530

    Article  CAS  Google Scholar 

  • Liu C (2011) Determination of magnesium, calcium, hard, titanium in Heilongjiang Jixi gangue. J Liaoning Univ Nat Sci Ed 1:21 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Liu H, Liu Z (2010) Recycling utilization patterns of coal mining waste in China. Resour Conserv Recycl 54:1331–1340. https://doi.org/10.1016/j.resconrec.2010.05.005

    Article  Google Scholar 

  • Liu Y, Li L, Fu J, Liu W, Wang H (2009) The practition of mine gangue of high aluminum and gallium comprehensive utilization. Guangdong Chem Ind 7:61 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Liu X, Zhang N, Yao Y, Sun H, Feng H (2013) Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials. J Hazard Mater 262:428–438. https://doi.org/10.1016/j.jhazmat.2013.08.078

    Article  CAS  Google Scholar 

  • Mao, J.X., Tong, H.L., 2013. 10—coal resources, production and use in China A2—Osborne, Dave, in: The coal handbook: towards cleaner production. Woodhead publishing, pp. 220–234

  • Mao JH, Xu HL (1999) China’s coal resource distribution and perspective prediction. Coal Geol Explor 27:1–4 (in Chinese with English abstract)

    Google Scholar 

  • Mattigod SV, Rai D, Eary LE, Ainsworth CC (1990) Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. Review of the major elements. J Environ Qual 19:188–201

    Article  CAS  Google Scholar 

  • Meawad AS, Bojinova DY, Pelovski YG (2010) An overview of metals recovery from thermal power plant solid wastes. Waste Manag 30:2548–2559

    Article  CAS  Google Scholar 

  • Moskalyk RR (2003) Gallium: the backbone of the electronics industry. Miner Eng 16:921–929

    Article  CAS  Google Scholar 

  • National Development and Reform Commission of China (NDRCC), 2012. Annual Report on Resources Comprehensive Utilization in China, 2012 (in Chinese)

  • National Development and Reform Commission of China (NDRCC). 2014. Annual Report on Resources Comprehensive Utilization in China, 2014. (in Chinese)

  • Palmer MA, Bernhardt ES, Schlesinger WH, Eshleman KN, Foufoula-Georgiou E, Hendryx MS, Lemly AD, Likens GE, Loucks OL, Power ME, White PS, Wilcock PR (2010) Mountaintop mining consequences. Science 327:148–149

    Article  CAS  Google Scholar 

  • Palmer, C.A., Oman, C.L., Park, A.J., and Luppens, J.A., 2015, The U.S. Geological Survey coal quality (COALQUAL) database version 3.0: U.S. Geological Survey Data Series 975, 43 p. with appendixes, doi:https://doi.org/10.3133/ds975.

  • Pan DH, Peng HT (1989) gallium content in coal gangue in Liyan coal mine. Inorg Chem Ind 2:39–41 (in Chinese)

    Google Scholar 

  • Qin S, Sun Y, Li Y, Wang J, Zhao C, Gao K (2015) Coal deposits as promising alternative sources for gallium. Earth-Sci Rev 150:95–101. https://doi.org/10.1016/j.earscirev.2015.07.010

    Article  CAS  Google Scholar 

  • Querol X, Izquierdo M, Monfort E, Alvarez E, Font O, Moreno T, Alastuey A, Zhuang X, Lu W, Wang Y (2008) Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. Int J Coal Geol 75:93–104. https://doi.org/10.1016/j.coal.2008.04.003

    Article  CAS  Google Scholar 

  • Ren DY, Zhao FH, Dai SF, Luo KL (2006) Geochemistry of trace elements in coals. The Science Press, Beijing, pp 268–279 (in Chinese)

    Google Scholar 

  • Romero A, González I, Galán E (2006) Estimation of potential pollution of waste mining dumps at Peña del Hierro (Pyrite Belt, SW Spain) as a base for future mitigation actions. Appl Geochem 21:1093–1108. https://doi.org/10.1016/j.apgeochem.2006.03.002

    Article  CAS  Google Scholar 

  • Seredin VV (2012) From coal science to metal production and environmental protection: a new story of success. Int J Coal Geol 90–91:1–3. https://doi.org/10.1016/j.coal.2011.11.006

    Article  Google Scholar 

  • Seredin VV, Dai S, Sun Y, Chekryzhov IY (2013) Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl Geochem 31:1–11. https://doi.org/10.1016/j.apgeochem.2013.01.009

    Article  CAS  Google Scholar 

  • Shen ML, Yang RD, Zhu YG, Cao ZR (2016) Evaluation on comprehensive utilization of trace elements from coal gangue in western Guizhou. Coal Eng 48(9):39–42 (in Chinese with English abstract)

    Google Scholar 

  • Swaine DJ (2013) Trace elements in coals. Butterworth-Heinemann

  • Tang E, Peng C (2017) A macro- and microeconomic analysis of coal production in China. Resour Policy 51:234–242. https://doi.org/10.1016/j.resourpol.2017.01.007

    Article  Google Scholar 

  • Tao J, Li H (2009) The comprehensive utilization and evaluation of gangue resource in Guangyuan Tangjiahe. China Non-Met Miner Ind Her 5:11 (in Chinese with English abstract)

    Google Scholar 

  • Tian H, Gao J, Hao J, Lu L, Zhu C, Qiu P (2013) Atmospheric pollution problems and control proposals associated with solid waste management in China: a review. J Hazard Mater 252–253:142–154. https://doi.org/10.1016/j.jhazmat.2013.02.013

    Article  Google Scholar 

  • Tong XY, Liang J (2013) Study on the potential comprehensive utilization of trace elements in the coal gangue of Bijie, Guizhou. J Saf Environ 13:148–152 (in Chinese with English abstract)

    Google Scholar 

  • Wang H, Nakata T (2009) Analysis of the market penetration of clean coal technologies and its impacts in China’s electricity sector. Energy Policy. 37:338–351

    Article  Google Scholar 

  • Wang X, Zhao B, Zhang C, Zhang Q (2009) Paste-like self-flowing transportation backfilling technology based on coal gangue. Min Sci Technol China 19:137–143. https://doi.org/10.1016/S1674-5264(09)60026-0

    Article  CAS  Google Scholar 

  • Wang W, Sang S, Hao W, Wang R, Zhang J, Duan P, Qin Y, Xu S (2015) A cut-off grade for gold and gallium in coal. Fuel 147:62–66. https://doi.org/10.1016/j.fuel.2015.01.066

    Article  CAS  Google Scholar 

  • Wang J, Qin Q, Hu S, Wu K (2016b) A concrete material with waste coal gangue and fly ash used for farmland drainage in high groundwater level areas. J Clean Prod 112:631–638

    Article  Google Scholar 

  • Wang S, Luo K, Wang X, Sun Y (2016a) Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: an important part of Chinese emission inventories. Environ Pollut 209:107–113. https://doi.org/10.1016/j.envpol.2015.11.026

    Article  CAS  Google Scholar 

  • Wedepohl K (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

    Article  CAS  Google Scholar 

  • Xiao H, Ma X, Liu K (2010) Co-combustion kinetics of sewage sludge with coal and coal gangue under different atmospheres. Energy Convers Manag 51:1976–1980. https://doi.org/10.1016/j.enconman.2010.02.030

    Article  CAS  Google Scholar 

  • Xiao J, Li F, Zhong Q, Bao H, Wang B, Huang J, Zhang Y (2015) Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC. Hydrometallurgy 155:118–124. https://doi.org/10.1016/j.hydromet.2015.04.018

    Article  CAS  Google Scholar 

  • Xu H, Sun P, Tong J (2006) Extracting valuable elements from coal gangue. Hunan Metall 5:10 (in Chinese with English abstract)

    Google Scholar 

  • Yang X, Ji C (2007) Comprehensive utilization of the coal gangue. Coal Technol 26:108–110 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Yang, J.H., Chen, W.M., Duan, Y.L., 1998. Handbook of coal testing coal industry press, Beijing (in Chinese)

  • Yang J, Jiang ZQ, Ma HW, Su SQ, Wang MW, Li JH, YAO W (2014) The bauxite resource in China and advances in the techniques of extracting alumina from high-alumina coal fly ash. Earth Sci Front 21:313–324

    CAS  Google Scholar 

  • Yang Y, Wen X, Zeng F (2015a) Geochemistry of trace elements in partings of the Duerping Coal Mine, Xishan Coalfield, Taiyuan (North China) and its geological implication. Bull Mineral Petrol Geochem 4:17 (in Chinese with English abstract)

    Google Scholar 

  • Yang Z, Zhou X, Xu L (2015b) Eco-efficiency optimization for municipal solid waste management. J Clean Prod 104:242–249. https://doi.org/10.1016/j.jclepro.2014.09.091

    Article  CAS  Google Scholar 

  • Yang Z, Zhang Y, Liu L, Wang X, Zhang Z (2016) Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions. Waste Manag 50:213–221. https://doi.org/10.1016/j.wasman.2015.11.011

    Article  CAS  Google Scholar 

  • Yao ZT, Xia MS, Sarker PK, Chen T (2014) A review of the alumina recovery from coal fly ash, with a focus in China. Fuel 120:74–85

    Article  CAS  Google Scholar 

  • Ye JW, Shen GD, Lu L (2010) Hazards and comprehensive utilization of coal gangue. China Resour Compr Util 28:32–34 (in Chinese with English abstract)

    Google Scholar 

  • Yi H, Guo X, Hao J, Duan L, Li X (2006) Characteristics of inhalable particulate matter concentration and size distribution from power plants in China. J Air Waste Manag Assoc 56:1243–1251. https://doi.org/10.1080/10473289.2006.10464590

    Article  CAS  Google Scholar 

  • Yin HR, Chen P (2013) Comprehensive exploitation and utilization of Yulin coal gangue. J Shaanxi Univ SciTechnol 31(2):44–48 (in Chinese with English abstract)

    Google Scholar 

  • Zhang Q, Wang X (2007) Performance of cemented coal gangue backfill. J Cent S Univ Technol 14:216–219. https://doi.org/10.1007/s11771-007-0043-y

    Article  CAS  Google Scholar 

  • Zhang N, Sun H, Liu X, Zhang J (2009) Early-age characteristics of red mud–coal gangue cementitious material. J Hazard Mater 167:927–932. https://doi.org/10.1016/j.jhazmat.2009.01.086

    Article  CAS  Google Scholar 

  • Zhang DQ, Tan SK, Gersberg RM (2010) Municipal solid waste management in China: status, problems and challenges. J Environ Manag 91:1623–1633. https://doi.org/10.1016/j.jenvman.2010.03.012

    Article  CAS  Google Scholar 

  • Zhang N, Liu X, Sun H, Li L (2011) Pozzolanic behaviour of compound-activated red mud-coal gangue mixture. Cem Concr Res 41:270–278. https://doi.org/10.1016/j.cemconres.2010.11.013

    Article  CAS  Google Scholar 

  • Zhao HY (2014) Introduction of high alumina coal gangue resources and industrialization of alumina extraction technologies in China. Conserv Util Miner Resour 1:54–58 (in Chinese with English abstract)

    Google Scholar 

  • Zhao Y, Zhang J, Chou C-L, Li Y, Wang Z, Ge Y, Zheng C (2008) Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. Int J Coal Geol 73:52–62. https://doi.org/10.1016/j.coal.2007.07.007

    Article  CAS  Google Scholar 

  • Zhao W, Voet d, van E, Zhang Y, Huppes G (2009) Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China. Sci Total Environ 407:1517–1526. https://doi.org/10.1016/j.scitotenv.2008.11.007

    Article  CAS  Google Scholar 

  • Zhou C, Liu G, Yan Z, Fang T, Wang R (2012) Transformation behavior of mineral composition and trace elements during coal gangue combustion. Fuel 97:644–650

    Article  CAS  Google Scholar 

  • Zhou C, Liu G, Wu S, Lam PKS (2014) The environmental characteristics of usage of coal gangue in bricking-making: a case study at Huainan, China. Chemosphere 95:274–280. https://doi.org/10.1016/j.chemosphere.2013.09.004

    Article  CAS  Google Scholar 

  • Zuo P (2009) Comprehensive utilization of coal gangue. Coal Technol 1:82 (in Chinese with English abstract)

    Google Scholar 

Download references

Funding

The field and analytical works were supported by the Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, PR China, and the National Basic Research Program of China (973 Program) (Grant no. 2014CB238900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, X. Potentially useful elements (Al, Fe, Ga, Ge, U) in coal gangue: a case study in Weibei coal mining area, Shaanxi Province, northwestern China. Environ Sci Pollut Res 25, 11893–11904 (2018). https://doi.org/10.1007/s11356-018-1476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1476-6

Keywords

Navigation