Skip to main content

Advertisement

Log in

An overview of after-treatment systems for diesel engines

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Vehicular pollution has become a major problem in urban areas due to the exponential rise in the number of automobiles. Typical exhaust emissions which include nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), soot, and particulate matter (PM) undoubtedly have an unpleasant effect on the environment. Several pollution control bodies are taking this subject seriously and issuing stringent emission norms which are to be complied strictly. Thus, regulation of these harmful pollutants is the need of the hour. Alternative fuels such as biodiesels and alcohols which are considered as a potentially viable solution for the problem of fossil fuel depletion also tend to require exhaust gas after-treatment in order to comply with the upcoming emission norms. Hence, this paper attempts to give a brief insight on the development and advances of different after-treatment devices like diesel particulate filter (DPF), lean NOx trap (LNT), diesel oxidation catalyst (DOC), and selective catalytic reduction (SCR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A/F:

Air to fuel

CO:

Carbon monoxide

CPSI:

Cells per square inch

C.I:

Compression ignition

DEF:

Diesel exhaust fluid

DOC:

Diesel oxidation catalyst

DPF:

Diesel particulate filter

HC:

Hydrocarbons

LNT:

Lean NOX trap

NOX :

Nitrogen oxides

PAH:

Polycyclic aromatic hydrocarbon

PM:

Particulate matter

SCR:

Selective catalytic reduction

SOx:

Sulfur oxides

References

  • Abdulhamid H, Fridell E, Skoglundh M (2004) Influence of the type of reducing agent (H2, CO, C3H6 and C3H8) on the reduction of stored NO X in a Pt/BaO/Al2O3 model catalyst. Top Catal 30(1–4):161–168

    Google Scholar 

  • Aneggi E, de Leitenburg C, Trovarelli A (2012) On the role of lattice/surface oxygen in ceria–zirconia catalysts for diesel soot combustion. Catal Today 181(1):108–115

    CAS  Google Scholar 

  • Arvajová A, Kočí P, Schmeißer V, Weibel M (2016) The impact of CO and C 3 H 6 pulses on PtO x reduction and NO oxidation in a diesel oxidation catalyst. Appl Catal B Environ 181:644–650

    Google Scholar 

  • Asad NS, Yun-Shan GE, Lei J, Zhi-Hua LIU (2010) Performance evaluation of a urea-water selective catalytic reduction (SCR) for controlling the exhaust emissions from a diesel engine. Turk J Eng Environ Sci 33(4):259–272

    Google Scholar 

  • Atribak I, Bueno-López A, García-García A (2008) Combined removal of diesel soot particulates and NO x over CeO 2–ZrO 2 mixed oxides. J Catal 259(1):123–132

    CAS  Google Scholar 

  • Atribak I, Bueno-López A, García-García A (2010) Uncatalysed and catalysed soot combustion under NOx+ O 2: real diesel versus model soots. Combustion Flame 157(11):2086–2094

    CAS  Google Scholar 

  • Auvray X, Partridge W, Choi JS, Pihl J, Coehlo F, Yezerets A et al (2015) Kinetic modeling of NH 3-SCR over a supported Cu zeolite catalyst using axial species distribution measurements. Appl Catal B Environ 163:393–403

    CAS  Google Scholar 

  • Ayodhya AS, Venkatesh TL, Thirumoorthy M, Kumar GN (2018) NOx reduction studies on a diesel engine operating on waste plastic oil blend using selective catalytic reduction technique. J Energy Inst

  • Azis MM, Auvray X, Olsson L, Creaser D (2015) Evaluation of H 2 effect on NO oxidation over a diesel oxidation catalyst. Appl Catal B Environ 179:542–550

    CAS  Google Scholar 

  • Bai S, Tang J, Wang G, Li G (2016) Soot loading estimation model and passive regeneration characteristics of DPF system for heavy-duty engine. Appl Therm Eng 100:1292–1298

    CAS  Google Scholar 

  • Baik JH, Yim SD, Nam IS, Mok YS, Lee JH, Cho BK, Oh SH (2004) Control of NO x emissions from diesel engine by selective catalytic reduction (SCR) with urea. Top Catal 30(1–4):37–41

    Google Scholar 

  • Bailey OH, Hedgecock M, Schuetze FW, Woerz A (2013) U.S. patent no. 8,557,203. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Barasa PD, Gundrum TJ (2007) U.S. patent no. 7,299,626. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Bartley GJJ, Sharp CA (2007) U.S. patent no. 7,163,668. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Bedar, P., Pandey, J. K., and Kumar, G. N. (2016). Effect of exhaust gas recirculation (EGR) on diesel engine using Simarouba glauca biodiesel blends. International Energy Journal, 15(2)

  • Bedar P, Lamani VT, Ayodhya AS, KUMAR GN (2017) Combined effect of exhaust gas recirculation (EGR) and fuel injection pressure on CRDI engine operating with Jatropha curcas biodiesel blends. J Engineering Sci Technol 12(10):2628–2639

    Google Scholar 

  • Benaqqa C, Gomina M, Beurotte A, Boussuge M, Delattre B, Pajot K et al (2014) Morphology, physical, thermal and mechanical properties of the constitutive materials of diesel particulate filters. Appl Therm Eng 62(2):599–606

    CAS  Google Scholar 

  • Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977

    CAS  Google Scholar 

  • Bhandarkar S (2013) Vehicular pollution, their effect on human health and mitigation measures. VE, 1(2):3340

  • Bhatia D, McCabe RW, Harold MP, Balakotaiah V (2009) Experimental and kinetic study of NO oxidation on model Pt catalysts. J Catal 266(1):106–119

    CAS  Google Scholar 

  • Boroń P, Chmielarz L, Casale S, Calers C, Krafft JM, Dzwigaj S (2015) Effect of Co content on the catalytic activity of CoSiBEA zeolites in N 2 O decomposition and SCR of NO with ammonia. Catal Today 258:507–517

    Google Scholar 

  • Botte GG (2013) U.S. patent no. 8,388,920. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Brehob DD, Kappauf TA, Hepburn JS (2001) U.S. patent no. 6,244,047. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Broqvist P, Panas I, Fridell E, Persson H (2002) NO x storage on BaO (100) surface from first principles: a two channel scenario. J Phys Chem B 106(1):137–145

    CAS  Google Scholar 

  • Burch R, Breen JP, Hill CJ, Krutzsch B, Konrad B, Jobson E et al (2004) Exceptional activity for NO x reduction at low temperatures using combinations of hydrogen and higher hydrocarbons on Ag/Al2O3 catalysts. Top Catal 30(1–4):19–25

    Google Scholar 

  • Busca G, Lietti L, Ramis G, Berti F (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NO x by ammonia over oxide catalysts: a review. Appl Catal B Environ 18(1):1–36

    CAS  Google Scholar 

  • Bykowski BB (1989) U.S. patent no. 4,813,231. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Cao JL, Wang Y, Zhang TY, Wu SH, Yuan ZY (2008) Preparation, characterization and catalytic behavior of nanostructured mesoporous CuO/Ce 0.8 Zr 0.2 O 2 catalysts for low-temperature CO oxidation. Appl Catal B Environ 78(1):120–128

    CAS  Google Scholar 

  • Castoldi L, Lietti L, Forzatti P, Morandi S, Ghiotti G, Vindigni F (2010) The NOx storage-reduction on Pt K/Al 2 O 3 lean NOx trap catalyst. J Catal 276(2):335–350

    CAS  Google Scholar 

  • Caudle MT, Dieterle M, Buzby SE (2013) U.S. patent no. 8,524,185. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Cavataio G, Girard J, Patterson JE, Montreuil C, Cheng Y, Lambert CK (2007) Laboratory testing of urea-SCR formulations to meet Tier 2 Bin 5 emissions (No. 2007-01-1575). SAE Technical Paper

  • Chang FY, Wey MY, Chen JC (2008) Effects of sodium modification, different reductants and SO 2 on NO reduction by Rh/Al 2 O 3 catalysts at excess O 2 conditions. J Hazard Mater 156(1):348–355

    CAS  Google Scholar 

  • Chen LF, González G, Wang JA, Norena LE, Toledo A, Castillo S, Morán-Pineda M (2005) Surfactant-controlled synthesis of Pd/Ce 0.6 Zr 0.4 O 2 catalyst for NO reduction by CO with excess oxygen. Appl Surf Sci 243(1):319–328

    CAS  Google Scholar 

  • Chiarello GL, Grunwaldt JD, Ferri D, Krumeich F, Oliva C, Forni L, Baiker A (2007) Flame-synthesized LaCoO 3-supported Pd: 1. Structure, thermal stability and reducibility. J Catal 252(2):127–136

    CAS  Google Scholar 

  • Chorkendorff I, Niemantsverdriet JW (2006) Concepts of modern catalysis and kinetics. John Wiley and Sons

  • Ciardelli C, Nova I, Tronconi E, Chatterjee D, Burkhardt T, Weibel M (2007) NH3 SCR of NOx for diesel exhausts aftertreatment: role of NO2 in catalytic mechanism, unsteady kinetics and monolith converter modelling. Chem Eng Sci 62(18):5001–5006

    CAS  Google Scholar 

  • Colombo M, Nova I, Tronconi E, Schmeißer V, Bandl-Konrad B, Zimmermann L (2012) NO/NO 2/N 2 O–NH 3 SCR reactions over a commercial Fe-zeolite catalyst for diesel exhaust aftertreatment: intrinsic kinetics and monolith converter modelling. Appl Catal B Environ 111:106–118

    Google Scholar 

  • Constantinou C, Li W, Qi G, Epling WS (2013) NO X storage and reduction over a perovskite-based lean NO X trap catalyst. Appl Catal B Environ 134:66–74

    Google Scholar 

  • Cullen MJ, Farmer DG (1999) U.S. patent no. 5,894,725. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Cutler WA, Hickman DL (2002) U.S. patent no. 6,464,744. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Daniel C, Burkhardt T, Bandl-Konrad B, Braun T, Tronconi E, Nova I, Ciardelli C (2005) Numerical simulation of ammonia SCR-catalytic converters model development and application. SAE Technical Paper (No. 2005-01-0965)

  • Despres J, Elsener M, Koebel M, Kröcher O, Schnyder B, Wokaun A (2004) Catalytic oxidation of nitrogen moNOxide over Pt/SiO 2. Appl Catal B Environ 50(2):73–82

    CAS  Google Scholar 

  • Dhar A, Agarwal AK (2015) Experimental investigations of the effect of pilot injection on performance, emissions and combustion characteristics of Karanja biodiesel fuelled CRDI engine. Energy Convers Manag 93:357–366

    CAS  Google Scholar 

  • DiGiulio CD, Komvokis VG, Amiridis MD (2012) In situ FTIR investigation of the role of surface isocyanates in the reduction of NO X by CO and C 3 H 6 over model Pt/BaO/Al 2 O 3 and Rh/BaO/Al 2 O 3 NO X storage and reduction (NSR) catalysts. Catal Today 184(1):8–19

    CAS  Google Scholar 

  • Dixit S, Rehman A (2012) Linseed oil as a potential resource for bio-diesel: a review. Renew Sust Energ Rev 16(7):4415–4421

    CAS  Google Scholar 

  • Doronkin DE, Khan TS, Bligaard T, Fogel S, Gabrielsson P, Dahl S (2012) Sulfur poisoning and regeneration of the Ag/γ-Al 2 O 3 catalyst for H 2-assisted SCR of NO x by ammonia. Appl Catal B Environ 117:49–58

    Google Scholar 

  • Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE (2004a) Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catal Rev 46(2):163–245

    Google Scholar 

  • Epling WS, Parks JE, Campbell GC, Yezerets A, Currier NW, Campbell LE (2004b) Further evidence of multiple NO x sorption sites on NO x storage/reduction catalysts. Catal Today 96(1):21–30

    CAS  Google Scholar 

  • Eränen K, Klingstedt F, Arve K, Lindfors LE, Murzin DY (2004) On the mechanism of the selective catalytic reduction of NO with higher hydrocarbons over a silver/alumina catalyst. J Catal 227(2):328–343

    Google Scholar 

  • Farrauto RJ, Hobson MC, Kennelly T, Waterman EM (1992) Catalytic chemistry of supported palladium for combustion of methane. Appl Catal A Gen 81(2):227–237

    CAS  Google Scholar 

  • Fino D, Bensaid S, Piumetti M, Russo N (2016) A review on the catalytic combustion of soot in diesel particulate filters for automotive applications: from powder catalysts to structured reactors. Appl Catal A Gen 509:75–96

    CAS  Google Scholar 

  • Galisteo CF, Mariscal R, López Granados M, Fierro JLG, Brettes P, Salas O (2005) Reactivation of a commercial diesel oxidation catalyst by acid washing. Environ Sci Technol 39(10):3844–3848

  • Gonze EV, Ament F (2013) U.S. patent no. 8,615,988. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Guan B, Zhan R, Lin H, Huang Z (2014) Review of state of the art technologies of selective catalytic reduction of NO x from diesel engine exhaust. Appl Therm Eng 66(1):395–414

    CAS  Google Scholar 

  • Guan B, Zhan R, Lin H, Huang Z (2015) Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. J Environ Manag 154:225–258

    CAS  Google Scholar 

  • Halkides TI, Kondarides DI, Verykios XE (2002) Mechanistic study of the reduction of NO by C 3 H 6 in the presence of oxygen over Rh/TiO 2 catalysts. Catal Today 73(3):213–221

    CAS  Google Scholar 

  • Haneda M, Kudo H, Nagao Y, Fujitani T, Hamada H (2006) Enhanced activity of Ba-doped Ir/SiO 2 catalyst for NO reduction with CO in the presence of O 2 and SO 2. Catal Commun 7(7):423–426

    CAS  Google Scholar 

  • Harold MP, Garske ME (1991) Kinetics and multiple rate states of CO oxidation on Pt I. Model development and multiplicity analysis. J Catal 127(2):524–552

    CAS  Google Scholar 

  • Hauff K, Tuttlies U, Eigenberger G, Nieken U (2010) A global description of DOC kinetics for catalysts with different platinum loadings and aging status. Appl Catal B Environ 100(1):10–18

    CAS  Google Scholar 

  • Hauff K, Dubbe H, Tuttlies U, Eigenberger G, Nieken U (2013) Platinum oxide formation and reduction during NO oxidation on a diesel oxidation catalyst—macrokinetic simulation. Appl Catal B Environ 129:273–281

    CAS  Google Scholar 

  • Hayashi K, Ogura Y, Kobashi K, Sami H, Fukami A (1990) Regeneration capability of wall-flow monolith diesel particulate filter with electric heater (no. 900603). SAE technical paper

  • He X, Meng M, He J, Zou Z, Li X, Li Z, Jiang Z (2010) A potential substitution of noble metal Pt by perovskite LaCoO 3 in ZrTiO 4 supported lean-burn NOx trap catalysts. Catal Commun 12(3):165–168

    CAS  Google Scholar 

  • Hemmings S, Megaritis A (2012) Periodically regenerating diesel particulate filter with a hydrogen/carbon moNOxide mixture addition. Int J Hydrog Energy 37(4):3573–3584

    CAS  Google Scholar 

  • Heo I, Wiebenga MH, Gaudet JR, Nam IS, Li W, Kim CH (2014) Ultra low temperature CO and HC oxidation over Cu-based mixed oxides for future automotive applications. Appl Catal B Environ 160:365–373

    Google Scholar 

  • Hepburn JS, Thanasiu E, Dobson DA, Watkins WL (1996) Experimental and modeling investigations of NOx trap performance (no. 962051). SAE technical paper

  • Hepburn JS, Meyer GM, Asik JR (2001) U.S. patent no. 6,199,373. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Herreros JM, Gill SS, Lefort I, Tsolakis A, Millington P, Moss E (2014) Enhancing the low temperature oxidation performance over a Pt and a Pt–Pd diesel oxidation catalyst. Appl Catal B Environ 147:835–841

    CAS  Google Scholar 

  • Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill Education, New York

    Google Scholar 

  • Hilgendorff M, Punke AH, Müller-Stach TW, Grubert G, Neubauer T, Hoke JB (2015) U.S. patent no. 9,034,269. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Hirano T, Tosho T, Watanabe T, Akiyama T (2009) Self-propagating high-temperature synthesis with post-heat treatment of La 1− x Sr x FeO 3 (x= 0–1) perovskite as catalyst for soot combustion. J Alloys Compd 470(1):245–249

    CAS  Google Scholar 

  • Hosseini SA, Niaei A, Salari D, Nabavi SR (2014) Modeling and optimization of combustion process of 2-propanol over perovskite-type LaMn y Co 1− y O 3 nanocatalysts by an unreplicated experimental design with mixture–process variables and genetic algorithm methodology. J Taiwan Inst Chem Eng 45(1):85–91

    CAS  Google Scholar 

  • Hoyle ND, Kumarasamy P, Self VA, Sermon PA, Vong MSW (1999) Catalysis of H 2, CO and alkane oxidation–combustion over Pt/silica catalysts: evidence of coupling and promotion. Catal Today 47(1):45–49

    CAS  Google Scholar 

  • Hung CM (2010) Characterization and performance of Pt-Pd-Rh cordierite monolith catalyst for selectivity catalytic oxidation of ammonia. J Hazard Mater 180(1):561–565

    CAS  Google Scholar 

  • Hyerim G, Chun KM, Song S (2015) The effects of hydrogen on the efficiency of NO x reduction via hydrocarbon-selective catalytic reduction (HC-SCR) at low temperature using various reductants. Int J Hydrog Energy 40(30):9602–9610

    Google Scholar 

  • Infantes-Molina A, Righini L, Castoldi L, Loricera CV, Fierro JLG, Sin A, Lietti L (2012) Characterization and reactivity of Ce-promoted PtBa lean NO x trap catalysts. Catal Today 197(1):178–189

    CAS  Google Scholar 

  • Ingram-Ogunwumi RS, Dong Q, Murrin TA, Bhargava RY, Warkins JL, Heibel AK (2007) Performance evaluations of aluminum titanate diesel particulate filters (No. 2007-01-0656). SAE Technical Paper

  • Irene M, Marie O, Bazin P, Daturi M, Jeandel X (2011) An operando IR study of the unburnt HC effect on the activity of a commercial automotive catalyst for NH 3-SCR. Appl Catal B Environ 102(1):190–200

    Google Scholar 

  • Iwasaki M, Shinjoh H (2010) A comparative study of “standard”, “fast” and “NO 2” SCR reactions over Fe/zeolite catalyst. Appl Catal A Gen 390(1):71–77

    CAS  Google Scholar 

  • Iwasaki S, Mizutani T, Miyairi Y, Yuuki K, Makino M (2011) New design concept for diesel particulate filter. SAE Int J Engines 4(2011-01-0603):527–536

    Google Scholar 

  • James D, Fourré E, Ishii M, Bowker M (2003) Catalytic decomposition/regeneration of Pt/Ba (NO 3) 2 catalysts: NO x storage and reduction. Appl Catal B Environ 45(2):147–159

    CAS  Google Scholar 

  • Joubert E, Courtois X, Marecot P, Canaff C, Duprez D (2006) The chemistry of DeNOx reactions over Pt/Al 2 O 3: the oxime route to N 2 or N 2 O. J Catal 243(2):252–262

    CAS  Google Scholar 

  • Jozsa P, Jobson E, Larsson M (2004) Reduction of NO x stored at low temperatures on a NO x adsorbing catalyst. Top Catal 30(1–4):177–180

    Google Scholar 

  • Kandylas IP, Koltsakis GC, Stamatelos AM (1999) Mathematical modelling of precious metals catalytic converters for diesel NOx reduction. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 213(3):279–292

    Google Scholar 

  • Khair MK (2003) A review of diesel particulate filter technologies (No. 2003-01-2303). SAE Technical Paper

  • Kijlstra WS, Biervliet M, Poels EK, Bliek A (1998) Deactivation by SO 2 of MnO x/Al 2 O 3 catalysts used for the selective catalytic reduction of NO with NH 3 at low temperatures. Appl Catal B Environ 16(4):327–337

    Google Scholar 

  • Kim CH, Qi G, Dahlberg K, Li W (2010) Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 327(5973):1624–1627

    CAS  Google Scholar 

  • Kobayashi T, Yamada T, Kayano K (1997) Study of NOx trap reaction by thermodynamic calculation (no. 970745). SAE technical paper

  • Kočí P, Plát F, Štěpánek J, Kubíček M, Marek M (2008) Dynamics and selectivity of NO x reduction in NO x storage catalytic monolith. Catal Today 137(2):253–260

    Google Scholar 

  • Koebel M, Elsener M, Kleemann M (2000) Urea-SCR: a promising technique to reduce NO x emissions from automotive diesel engines. Catal Today 59(3):335–345

    CAS  Google Scholar 

  • Konstandopoulos, A. G., and Johnson, J. H. (1989). Wall-flow diesel particulate filters—their pressure drop and collection efficiency (no. 890405). SAE technical paper

  • Kotrba, A., Gardner, T. P., Bai, L., and Yetkin, A. (2013). Passive regeneration response characteristics of a DPF system (No. 2013-01-0520). SAE Technical Paper

  • Kumar PA, Tanwar MD, Bensaid S, Russo N, Fino D (2012) Soot combustion improvement in diesel particulate filters catalyzed with ceria nanofibers. Chem Eng J 207:258–266

    Google Scholar 

  • Kumar AM, Sreekumar JS, Mohanan P (2015) The effect of cordierite/Pt catalyst on the NOx reduction in a diesel and Jatropha bio-diesel operated single cylinder engine. J Environ Chemical Engineering 3(2):1125–1136

    CAS  Google Scholar 

  • Kumar A, Smith MA, Kamasamudram K, Currier NW, Yezerets A (2016) Chemical deSOx: an effective way to recover cu-zeolite SCR catalysts from sulfur poisoning. Catal Today 267:10–16

    CAS  Google Scholar 

  • Kuwahara T, Nishii S, Kuroki T, Okubo M (2013) Complete regeneration characteristics of diesel particulate filter using ozone injection. Appl Energy 111:652–656

    CAS  Google Scholar 

  • Kwak JH, Kim DH, Szanyi J, Peden CH (2008) Excellent sulfur resistance of Pt/BaO/CeO 2 lean NO x trap catalysts. Appl Catal B Environ 84(3):545–555

    CAS  Google Scholar 

  • Lafossas F, Matsuda Y, Mohammadi A, Morishima A, Inoue M, Kalogirou M et al (2011) Calibration and validation of a diesel oxidation catalyst model: from synthetic gas testing to driving cycle applications. SAE Int J Engines 4(2011-01-1244):1586–1606

    Google Scholar 

  • Lambert, C., Hammerle, R., McGill, R., Khair, M., and Sharp, C. (2004). Technical advantages of urea SCR for light-duty and heavy-duty diesel vehicle applications (No. 2004-01-1292). SAE Technical Paper

  • Larson RS, Pihl JA, Chakravarthy VK, Toops TJ, Daw CS (2008) Microkinetic modeling of lean NOx trap chemistry under reducing conditions. Catal Today 136(1):104–120

    CAS  Google Scholar 

  • Laurent F, Pope CJ, Mahzoul H, Delfosse L, Gilot P (2003) Modelling of NO x adsorption over NO x adsorbers. Chem Eng Sci 58(9):1793–1803

    CAS  Google Scholar 

  • Le Phuc N, Corbos EC, Courtois X, Can F, Marecot P, Duprez D (2009) NO x storage and reduction properties of Pt/Ce x Zr 1− x O 2 mixed oxides: sulfur resistance and regeneration, and ammonia formation. Appl Catal B Environ 93(1):12–21

    Google Scholar 

  • Lee, J. H., Park, J. W., Lim, S., Schaub, J., Wittka, T., and Alexander, V. O. V. K. (2015). U.S. Patent Application No. 14/955,955

  • Leistner K, Mihai O, Wijayanti K, Kumar A, Kamasamudram K, Currier NW et al (2015) Comparison of Cu/BEA, Cu/SSZ-13 and Cu/SAPO-34 for ammonia-SCR reactions. Catal Today 258:49–55

    CAS  Google Scholar 

  • Lemus-Yegres, L. J., and Jakobsson, N. B. (2012). US Patent Application No 14/405,851

  • Leontiou AA, Ladavos AK, Pomonis PJ (2003) Catalytic NO reduction with CO on La 1− x Sr x (Fe 3+/Fe 4+) O 3±δ perovskite-type mixed oxides (x= 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, and 0.90). Appl Catal A Gen 241(1):133–141

    CAS  Google Scholar 

  • Lešnik L, Biluš I (2016) The effect of rapeseed oil biodiesel fuel on combustion, performance, and the emission formation process within a heavy-duty DI diesel engine. Energy Convers Manag 109:140–152

    Google Scholar 

  • Li Q, Meng M, Dai F, Zha Y, Xie Y, Hu T, Zhang J (2012) Multifunctional hydrotalcite-derived K/MnMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot–NOx removal. Chem Eng J 184:106–112

    CAS  Google Scholar 

  • Li Z, Wang D, Liu Y, Kamasamudram K, Li J, Epling W (2014) SO 2 poisoning impact on the NH 3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst. Appl Catal B Environ 156:371–377

    Google Scholar 

  • Lin H, Li Y, Shangguan W, Huang Z (2009) Soot oxidation and NOx reduction over BaAl 2 O 4 catalyst. Combustion Flame 156(11):2063–2070

    CAS  Google Scholar 

  • Lindholm A, Currier NW, Fridell E, Yezerets A, Olsson L (2007) NO x storage and reduction over Pt based catalysts with hydrogen as the reducing agent: influence of H2O and CO2. Appl Catal B Environ 75(1):78–87

    CAS  Google Scholar 

  • Lindholm A, Currier NW, Li J, Yezerets A, Olsson L (2008) Detailed kinetic modeling of NOx storage and reduction with hydrogen as the reducing agent and in the presence of CO 2 and H 2 O over a Pt/Ba/Al catalyst. J Catal 258(1):273–288

    CAS  Google Scholar 

  • Liu Z, Anderson JA (2004) Influence of reductant on the regeneration of SO 2-poisoned Pt/Ba/Al 2 O 3 NO x storage and reduction catalyst. J Catal 228(1):243–253

    CAS  Google Scholar 

  • Liu Z, Li J, Junaid AS (2010) Knowledge and know-how in improving the sulfur tolerance of deNO x catalysts. Catal Today 153(3):95–102

    CAS  Google Scholar 

  • Liu, L., Li, Z., Liu, S., and Shen, B. (2016). Effect of exhaust gases of exhaust gas recirculation (EGR) coupling lean-burn gasoline engine on NOx purification of lean NOx trap (LNT). Mech Syst Signal Process

  • Lox, E. S. J., and Ertl, G. (2008). Handbook of heterogeneous catalysis–second. Completely revised and enlarged edition

  • Lundberg B, Sjöblom J, Johansson Å, Westerberg B, Creaser D (2016) DOC modeling combining kinetics and mass transfer using inert washcoat layers. Appl Catal B Environ 191:116–129

    CAS  Google Scholar 

  • Ma L, Li J, Ke R, Fu L (2011) Catalytic performance, characterization, and mechanism study of Fe2 (SO4) 3/TiO2 catalyst for selective catalytic reduction of NOx by ammonia. J Phys Chem C 115(15):7603–7612

    CAS  Google Scholar 

  • Mani M, Subash C, Nagarajan G (2009) Performance, emission and combustion characteristics of a DI diesel engine using waste plastic oil. Appl Therm Eng 29(13):2738–2744

    CAS  Google Scholar 

  • Mao C (2010) Characterization and performance of Pt-Pd-Rh cordierite monolith catalyst for selectivity catalytic oxidation of ammonia. J Hazard Mater 180(1):561–565

    Google Scholar 

  • Massimo C, Koltsakis G, Nova I, Tronconi E (2012) Modelling the ammonia adsorption–desorption process over an Fe–zeolite catalyst for SCR automotive applications. Catal Today 188(1):42–52

    Google Scholar 

  • Maunula, T., Matilainen, P., Louhelainen, M., Juvonen, P., and Kinnunen, T. (2007). Catalyzed particulate filters for mobile diesel applications (No. 2007-01-0041). SAE Technical Paper

  • Meyers, R. H., and Montgomery, D. C. (2002). Response surface methodology. Process and product optimisation using design experiments, second ed, Willey, New York

  • Mikulic, I., Zhan, R., and Eakle, S. (2010). Dependence of fuel consumption on engine backpressure generated by a DPF (No. 2010-01-0535). SAE Technical Paper

  • Millo F, Andreata M, Rafigh M, Mercuri D, Pozzi C (2015) Impact on vehicle fuel economy of the soot loading on diesel particulate filters made of different substrate materials. Energy 86:19–30

    CAS  Google Scholar 

  • Miyoshi, N., Matsumoto, S. I., Katoh, K., Tanaka, T., Harada, J., Takahashi, N., and Kasahara, K. (1995). Development of new concept three-way catalyst for automotive lean-burn engines (no. 950809). SAE technical paper

  • Mohammed, H., Lakkireddy, V. R., Johnson, J. H., and Bagley, S. T. (2006). An experimental and modeling study of a diesel oxidation catalyst and a catalyzed diesel particulate filter using a 1-D 2-layer model (No. 2006-01-0466). SAE Technical Paper

  • Morandi S, Ghiotti G, Castoldi L, Lietti L, Nova I, Forzatti P (2011) Reduction by CO of NO x species stored onto Pt–K/Al 2 O 3 and Pt–Ba/Al 2 O 3 lean NO x traps. Catal Today 176(1):399–403

    CAS  Google Scholar 

  • Mousavi, S. M., and Panahi, P. N. (2016). Modeling and optimization of NH 3-SCR performance of MNOx/γ-alumina nanocatalysts by response surface methodology. J Taiwan Inst Chem Eng

  • Mousavi SM, Niaei A, Salari D, Panahi PN, Samandari M (2013) Modelling and optimization of Mn/activate carbon nanocatalysts for NO reduction: comparison of RSM and ANN techniques. Environ Technol 34(11):1377–1384

    CAS  Google Scholar 

  • Mousavi SM, Salari D, Niaei A, Panahi PN, Shafiei S (2014) A modelling study and optimization of catalytic reduction of NO over CeO2–MnO x (0.25)–Ba mixed oxide catalyst using design of experiments. Environ Technol 35(5):581–589

    CAS  Google Scholar 

  • Mráček D, Kočí P, Choi JS, Partridge WP (2016) New operation strategy for driving the selectivity of NO x reduction to N 2, NH 3 or N 2 O during lean/rich cycling of a lean NO x trap catalyst. Appl Catal B Environ 182:109–114

    Google Scholar 

  • Mulla SS, Chen N, Delgass WN, Epling WS, Ribeiro FH (2005) NO2 inhibits the catalytic reaction of NO and O2 over Pt. Catal Lett 100(3–4):267–270

    CAS  Google Scholar 

  • Neeft JP, Makkee M, Moulijn JA (1996) Diesel particulate emission control. Fuel Process Technol 47(1):1–69

    CAS  Google Scholar 

  • Neyertz CA, Banús ED, Miró EE, Querini CA (2014) Potassium-promoted Ce 0.65 Zr 0.35 O 2 monolithic catalysts for diesel soot combustion. Chem Eng J 248:394–405

    CAS  Google Scholar 

  • Niakolas D, Andronikou C, Papadopoulou C, Matralis H (2006) Influence of metal oxides on the catalytic behavior of Au/Al 2 O 3 for the selective reduction of NO x by hydrocarbons. Catal Today 112(1):184–187

    CAS  Google Scholar 

  • Nova I, Lietti L, Forzatti P, Frola F, Prinetto F, Ghiotti G (2009) Reaction pathways in the reduction of NO x species by CO over Pt–Ba/Al2O3: lean NO x trap catalytic systems. Top Catal 52(13–20):1757–1761

    CAS  Google Scholar 

  • Ogunwumi, S., Fox, R., Patil, M. D., and He, L. (2002). “In-situ NH3 generation for SCR NOx applications” . SAE Technical Paper (No. 2002-01-2872)

  • Olsson L, Fridell E (2002) The influence of Pt oxide formation and Pt dispersion on the reactions NO 2⇔ NO+ 1/2 O 2 over Pt/Al 2 O 3 and Pt/BaO/Al 2 O 3. J Catal 210(2):340–353

    CAS  Google Scholar 

  • Olsson L, Persson H, Fridell E, Skoglundh M, Andersson B (2001) A kinetic study of NO oxidation and NO x storage on Pt/Al2O3 and Pt/BaO/Al2O3. J Phys Chem B 105(29):6895–6906

    CAS  Google Scholar 

  • Olsson L, Fridell E, Skoglundh M, Andersson B (2002) Mean field modelling of NO x storage on Pt/BaO/Al 2 O 3. Catal Today 73(3):263–270

    CAS  Google Scholar 

  • Olsson L, Sjövall H, Blint RJ (2008) A kinetic model for ammonia selective catalytic reduction over Cu-ZSM-5. Appl Catal B Environ 81(3):203–217

    CAS  Google Scholar 

  • Ootake, M., Kondou, T., Ikeda, M., Daigo, M., Nakano, M., Yokoyama, J., and Miura, M. (2007). Development of diesel engine system with DPF for the European market (No. 2007-01-1061). SAE technical paper

  • Park JH, Park HJ, Baik JH, Nam IS, Shin CH, Lee JH et al (2006) Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH 3 for the urea selective catalytic reduction process. J Catal 240(1):47–57

    CAS  Google Scholar 

  • Parks JE, Prikhodko V, Storey JM, Barone TL, Lewis SA, Kass MD, Huff SP (2010) Emissions from premixed charge compression ignition (PCCI) combustion and affect on emission control devices. Catal Today 151(3):278–284

    CAS  Google Scholar 

  • Partridge WP, Choi JS (2009) NH 3 formation and utilization in regeneration of Pt/Ba/Al 2 O 3 NO x storage-reduction catalyst with H 2. Appl Catal B Environ 91(1):144–151

    CAS  Google Scholar 

  • Penghao, J., Zhijun, L., Boxi, S., Wen, Z., Xiangjin, K., and Rui, J. (2016). Research of DPF regeneration with NOx-PM coupled chemical reaction. Appl Therm Eng

  • Piumetti M, Bensaid S, Russo N, Fino D (2015) Nanostructured ceria-based catalysts for soot combustion: investigations on the surface sensitivity. Appl Catal B Environ 165:742–751

    CAS  Google Scholar 

  • Poulston S, Rajaram RR (2003) Regeneration of NO x trap catalysts. Catal Today 81(4):603–610

    CAS  Google Scholar 

  • Premchand, K. C. (2006). Experimental and modeling study of the filtration and oxidation characteristics of a diesel oxidation catalyst and a catalyzed particulate filter

  • Presti, M., Pace, L., Poggio, L., and Rossi, V. (2013). Cold start thermal management with electrically heated catalyst: a way to lower fuel consumption (No. 2013-24-0158). SAE Technical Paper

  • Qi G, Li W (2012) Pt-free, LaMnO 3 based lean NO x trap catalysts. Catal Today 184(1):72–77

    CAS  Google Scholar 

  • Rakopoulos DC, Rakopoulos CD, Giakoumis EG, Dimaratos AM, Kyritsis DC (2010) Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Convers Manag 51(10):1989–1997

    CAS  Google Scholar 

  • Ramdas R, Nowicka E, Jenkins R, Sellick D, Davies C, Golunski S (2015) Using real particulate matter to evaluate combustion catalysts for direct regeneration of diesel soot filters. Appl Catal B Environ 176:436–443

    Google Scholar 

  • Rao, V. D. N., Cikanek, H. A., and Horrocks, R. W. (1994). Diesel particulate control system for Ford 1.8 L Sierra Turbo-Diesel to meet 1997–2003 particulate standards (No. 940458). SAE Technical Paper

  • Roduit B, Wokaun A, Baiker A (1998) Global kinetic modeling of reactions occurring during selective catalytic reduction of NO by NH3 over vanadia/Titania-based catalysts. Ind Eng Chem Res 37(12):4577–4590

    CAS  Google Scholar 

  • Rossignol S, Kappenstein C (2001) Effect of doping elements on the thermal stability of transition alumina. Int J Inorg Mater 3(1):51–58

    CAS  Google Scholar 

  • Roy S, Baiker A (2009) NO x storage−reduction catalysis: from mechanism and materials properties to storage−reduction performance. Chem Rev 109(9):4054–4091

    CAS  Google Scholar 

  • Russell A, Epling WS (2011) Diesel oxidation catalysts. Catal Rev 53(4):337–423

    CAS  Google Scholar 

  • Saba T, Estephane J, El Khoury B, El Khoury M, Khazma M, El Zakhem H, Aouad S (2016) Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts. Renew Energy 90:301–306

    CAS  Google Scholar 

  • Sagar A, Trovarelli A, Casanova M, Schermanz K (2011) A new class of environmental friendly vanadate based NH 3 SCR catalysts exhibiting good low temperature activity and high temperature stability. SAE Int J Engines 4(2011-01-1331):1839–1849

    Google Scholar 

  • Salomons S, Hayes RE, Votsmeier M, Drochner A, Vogel H, Malmberg S, Gieshoff J (2007) On the use of mechanistic CO oxidation models with a platinum monolith catalyst. Appl Catal B Environ 70(1):305–313

    CAS  Google Scholar 

  • Satokawa S, Shibata J, Shimizu KI, Satsuma A, Hattori T (2003) Promotion effect of H 2 on the low temperature activity of the selective reduction of NO by light hydrocarbons over Ag/Al 2 O 3. Appl Catal B Environ 42(2):179–186

    CAS  Google Scholar 

  • Seo, J. M., Park, W. S., and Lee, M. J. (2012). The best choice of gasoline/diesel particulate filter to meet future particulate matter regulation (No. 2012-01-1255). SAE Technical Paper

  • Shimizu KI, Satsuma A (2007) Reaction mechanism of H2-promoted selective catalytic reduction of NO with NH3 over Ag/Al2O3. J Phys Chem C 111(5):2259–2264

    CAS  Google Scholar 

  • Simonot L, Maire G (1997) A comparative study of LaCoO 3, Co 3 O 4 and LaCoO 3—Co 3 O 4: I. preparation, characterisation and catalytic properties for the oxidation of CO. Appl Catal B Environ 11(2):167–179

    CAS  Google Scholar 

  • Sitshebo S, Tsolakis A, Theinnoi K (2009) Promoting hydrocarbon-SCR of NOx in diesel engine exhaust by hydrogen and fuel reforming. Int J Hydrog Energy 34(18):7842–7850

    CAS  Google Scholar 

  • Sjövall H, Blint RJ, Gopinath A, Olsson L (2009) A kinetic model for the selective catalytic reduction of NO x with NH3 over an Fe−zeolite catalyst. Ind Eng Chem Res 49(1):39–52

    Google Scholar 

  • Solaimuthu C, Ganesan V, Senthilkumar D, Ramasamy KK (2015) Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries. Appl Energy 138:91–98

    CAS  Google Scholar 

  • Song, X., Surenahalli, H., Naber, J., Parker, G., and Johnson, J. H. (2013). Experimental and modeling study of a diesel oxidation catalyst (DOC) under transient and CPF active regeneration conditions (No. 2013-01-1046). SAE Technical Paper

  • Southward, B. W., Basso, S., and Pfeifer, M. (2010). On the development of low PGM content direct soot combustion catalysts for diesel particulate filters (No. 2010-01-0558). SAE Technical Paper

  • Ström L, Carlsson PA, Skoglundh M, Härelind H (2016) Hydrogen-assisted SCR of NOx over alumina-supported silver and indium catalysts using C 2-hydrocarbons and oxygenates. Appl Catal B Environ 181:403–412

    Google Scholar 

  • Sun M, Croiset EB, Hudgins RR, Silveston PL, Menzinger M (2003) Steady-state multiplicity and superadiabatic extinction waves in the oxidation of CO/H2 mixtures over a Pt/Al2O3-coated monolith. Ind Eng Chem Res 42(1):37–45

    CAS  Google Scholar 

  • Sun, W. H., Cummings Jr, W. E., De Havilland, P., Carmignani, P. G., and Boyle, J. M. (2010). U.S. patent no. 7,829,033. Washington, DC: U.S. Patent and Trademark Office

  • Szailer T, Kwak JH, Kim DH, Hanson JC, Peden CH, Szanyi J (2006) Reduction of stored NO x on Pt/Al 2 O 3 and Pt/BaO/Al 2 O 3 catalysts with H 2 and CO. J Catal 239(1):51–64

    CAS  Google Scholar 

  • Tadrous, T. N., Brown, K., Towgood, P., and McConnell, C. (2010). Development of passive/active DPF system utilizing syngas regeneration strategy-retrofit, real life optimization and performance experience (No. 2010-01-0560). SAE Technical Paper

  • Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K et al (1996) The new concept 3-way catalyst for automotive lean-burn engine: NO x storage and reduction catalyst. Catal Today 27(1):63–69

    CAS  Google Scholar 

  • Tamm S, Fogel S, Gabrielsson P, Skoglundh M, Olsson L (2013) The effect of the gas composition on hydrogen-assisted NH 3-SCR over Ag/Al 2 O 3. Appl Catal B Environ 136:168–176

    Google Scholar 

  • Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38(4):439–520

    CAS  Google Scholar 

  • Tuttlies U, Schmeisser V, Eigenberger G (2004) A mechanistic simulation model for NOx storage catalyst dynamics. Chem Eng Sci 59(22):4731–4738

    CAS  Google Scholar 

  • Ueda A, Haruta M (1998) Reduction of nitrogen moNOxide with propene over Au/Al 2 O 3 mixed mechanically with Mn 2 O 3. Appl Catal B Environ 18(1):115–121

    CAS  Google Scholar 

  • Ura B, Trawczyński J, Kotarba A, Bieniasz W, Illan-Gomez MJ, Bueno-López A, López-Suárez FE (2011) Effect of potassium addition on catalytic activity of SrTiO 3 catalyst for diesel soot combustion. Appl Catal B Environ 101(3):169–175

    CAS  Google Scholar 

  • Vijay R, Snively CM, Lauterbach J (2006) Performance of Co-containing NO x storage and reduction catalysts as a function of cycling condition. J Catal 243(2):368–375

    CAS  Google Scholar 

  • Voltz SE, Morgan CR, Liederman D, Jacob SM (1973) Kinetic study of carbon moNOxide and propylene oxidation on platinum catalysts. Ind Eng Chem Prod Res Dev 12(4):294–301

    CAS  Google Scholar 

  • Ware MP Jr (2015) U.S. patent no. 20,150,267,581. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Wei L, Li J, Tang X (2009) NO x storage at low temperature over MnO x–SnO2 binary metal oxide prepared through different hydrothermal process. Catal Lett 127(1–2):107–112

    CAS  Google Scholar 

  • Wurzenberger JC, Wanker R (2005) Multi-scale SCR modeling, 1D kinetic analysis and 3D system simulation (No. 2005-01-0948). SAE Technical Paper

  • Xi Y, Ottinger NA, Liu ZG (2014) New insights into sulfur poisoning on a vanadia SCR catalyst under simulated diesel engine operating conditions. Appl Catal B Environ:160, 1–160, 9

    CAS  Google Scholar 

  • Xu W, He H, Yu Y (2009) Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3. J Phys Chem C 113(11):4426–4432

    CAS  Google Scholar 

  • Yang, C., Theinnoi, K., Tsolakis, A., Megaritis, T., and Zhao, H. (2010). Periodically regenerating diesel particulate filter with hydrogen addition: towards a fuel reformer–diesel engine aftertreatment system

  • Ye J, Yu Y, Meng M, Jiang Z, Ding T, Zhang S, Huang Y (2013) Highly efficient NO x purification in alternating lean/rich atmospheres over non-platinic mesoporous perovskite-based catalyst K/LaCoO 3. Catalysis Sci Technol 3(8):1915–1918

    CAS  Google Scholar 

  • Yi-Hsu J, Vali SR (2005) Rice bran oil as a potential resource for biodiesel: a review. J Sci Ind Res 64(11):866

    Google Scholar 

  • Yongdong CHEN, Lei WANG, Xiaoxu GUAN, Shuihua TANG, Maochu GONG, Yaoqiang CHEN (2013) A novel diesel oxidation catalyst with low SO 2 oxidation activity and capable of meeting Euro V emission standards. Chin J Catal 34(4):667–673

    Google Scholar 

  • You R, Zhang Y, Liu D, Meng M, Jiang Z, Zhang S, Huang Y (2015) A series of ceria supported lean-burn NOx trap catalysts LaCoO 3/K 2 CO 3/CeO 2 using perovskite as active component. Chem Eng J 260:357–367

    CAS  Google Scholar 

  • Yu Y, Chen J, Wang J, Chen Y (2016) Performances of CuSO 4/TiO 2 catalysts in selective catalytic reduction of NO x by NH 3. Chin J Catal 37(2):281–287

    CAS  Google Scholar 

  • Yuanzhou X, Ottinger NA, Liu ZG (2014) New insights into sulfur poisoning on a vanadia SCR catalyst under simulated diesel engine operating conditions. Appl Catal B Environ 160:1–9

    Google Scholar 

  • Zarei M, Niaei A, Salari D, Khataee A (2010) Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube–PTFE cathode. J Hazard Mater 173(1):544–551

    CAS  Google Scholar 

  • Zhang R, Villanueva A, Alamdari H, Kaliaguine S (2006) Reduction of NO by CO over nanoscale LaCo 1− x Cu x O 3 and LaMn 1− x Cu x O 3 perovskites. J Mol Catal A Chem 258(1):22–34

    CAS  Google Scholar 

  • Zhang TY, Wang SP, Yu Y, Su Y, Guo XZ, Wang SR et al (2008) Synthesis, characterization of CuO/Ce 0.8 Sn 0.2 O 2 catalysts for low-temperature CO oxidation. Catal Commun 9(6):1259–1264

    CAS  Google Scholar 

  • Zhang Y, Liu D, Meng M, Jiang Z, Zhang S (2014) A highly active and stable non-platinic lean NOx trap catalyst MNOx-K2CO3/K2Ti8O17 with ultra-low NOx to N2O selectivity. Ind Eng Chem Res 53(20):8416–8425

    CAS  Google Scholar 

  • Zhang Y, You R, Liu D, Liu C, Li X, Tian Y et al (2015) Carbonates-based noble metal-free lean NO x trap catalysts MO x–K 2 CO 3/K 2 Ti 8 O 17 (M= Ce, Fe, Cu, Co) with superior catalytic performance. Appl Surf Sci 357:2260–2276

    CAS  Google Scholar 

  • Zhao X, Huang L, Li H, Hu H, Hu X, Shi L, Zhang D (2016) Promotional effects of zirconium doped CeVO 4 for the low-temperature selective catalytic reduction of NOx with NH 3. Appl Catal B Environ 183:269–281

    CAS  Google Scholar 

  • Zheng M, Banerjee S (2009) Diesel oxidation catalyst and particulate filter modeling in active–flow configurations. Appl Therm Eng 29(14):3021–3035

    CAS  Google Scholar 

  • Zheng XC, Wu SH, Wang SP, Wang SR, Zhang SM, Huang WP (2005) The preparation and catalytic behavior of copper–cerium oxide catalysts for low-temperature carbon moNOxide oxidation. Appl Catal A Gen 283(1):217–223

    CAS  Google Scholar 

  • Zouaoui N, Labaki M, Jeguirim M (2014) Diesel soot oxidation by nitrogen dioxide, oxygen and water under engine exhaust conditions: kinetics data related to the reaction mechanism. Comptes Rendus Chimie 17(7):672–680

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archit Srinivasacharya Ayodhya.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayodhya, A.S., Narayanappa, K.G. An overview of after-treatment systems for diesel engines. Environ Sci Pollut Res 25, 35034–35047 (2018). https://doi.org/10.1007/s11356-018-3487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3487-8

Keywords

Navigation