Skip to main content
Log in

A review of organophosphorus flame retardants (OPFRs): occurrence, bioaccumulation, toxicity, and organism exposure

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Organophosphorus flame retardants (OPFRs) are increasingly being applied as flame retardants due to their unique properties. OPFRs are commonly detected in various environmental matrices, and organisms are extensively exposed to them. Considering the adverse effects of OPFRs, many researchers have devoted their attention to environmental risk assessments. This review outlines the current knowledge regarding the toxicity of OPFRs based on both in vitro and in vivo experiments in various environmentally relevant test species. The production, absorption, bioaccumulation, and biomagnification of OPFRs in animals and humans are also described. The joint effects of OPFRs and their coexisting characteristics are also discussed based on the limited available data and results. Finally, knowledge gaps and perspectives for future exposure studies of OPFRs in animals and humans are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbasi G, Saini A, Goosey E, Diamond ML (2016) Product screening for sources of halogenated flame retardants in Canadian house and office dust. Sci Total Environ 545:299–307

    Article  CAS  Google Scholar 

  • Abdallah MA, Covaci A (2014) Organophosphate flame retardants in indoor dust from Egypt: implications for human exposure. Environ Sci Technol 48:4782–4789

    Article  CAS  Google Scholar 

  • Ali N, Dirtu AC, Van den Eede N, Goosey E, Harrad S, Neels H, t’Mannetje A, Coakley J, Douwes J, Covaci A (2012) Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment. Chemosphere 88(11):1276–1282

  • An J, Hu JW, Shang Y, Zhong YF, Zhang XY, Yu ZQ (2016) The cytotoxicity of organophosphate flame retardants on hepg2, a549 and caco-2 cells. J Environ Sci Heal A 51:980–988

    Article  CAS  Google Scholar 

  • Bekele TG, Zhao H, Wang Y, Jiang J, Tan F (2018) Measurement and prediction of bioconcentration factors of organophosphate flame retardants in common carp (Cyprinus carpio). Ecotoxicol Environ Saf 166:270–276

    Article  CAS  Google Scholar 

  • Bester K (2005) Comparison of tcpp concentrations in sludge and wastewater in a typical German sewage treatment plant - comparison of sewage sludge from 20 plants. J Environ Monit 7:509–513

    Article  CAS  Google Scholar 

  • Bestvater LL (2014) The persistence, bioaccumulation, and inherent toxicity of two organophosphate flame retardants Tris (2-butoxyethyl) phosphate and Tris (1-chloro-2-propyl) phosphate in juvenile rainbow trout (Oncorhynchus mykiss). University of Manitoba

  • Betts KS (2013) Exposure to TDCPP appears widespread. Environ Health Perspect 121:A150–A150

    Google Scholar 

  • Bi XH, Simoneit BRT, Wang ZZ, Wang XM, Sheng GY, Fu JM (2010) The major components of particles emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China. Atmos Environ 44:4440–4445

    Article  CAS  Google Scholar 

  • Bollmann UE, Moler A, Xie ZY, Ebinghaus R, Einax JW (2012) Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters. Water Res 46:531–538

    Article  CAS  Google Scholar 

  • Bradley M, Rutkiewicz J, Mittal K, Fernie K, Basu N (2015) In ovo exposure to organophosphorous flame retardants: survival, development, neurochemical, and behavioral changes in white leghorn chickens. Neurotoxicol Teratol 52:228–235

    Article  CAS  Google Scholar 

  • Brandsma SH, Leonards PEG, Leslie HA, de Boer J (2015) Tracing organophosphorus and brominated flame retardants and plasticizers in an estuarine food web. Sci Total Environ 505:22–31

    Article  CAS  Google Scholar 

  • Burka LT, Sanders JM, Herr DW, Matthews HB (1991) Metabolism of tris(2-chloroethyl) phosphate in rats and mice. Drug Metab Dispos 19:443–447

    CAS  Google Scholar 

  • Canbaz D, Logiantara A, van Ree R, van Rijt LS (2017) Immunotoxicity of organophosphate flame retardants TPHP and TDCIPP on murine dendritic cells in vitro. Chemosphere 177:56–64

    Article  CAS  Google Scholar 

  • Cao S, Zeng X, Song H, Li H, Yu Z, Sheng G, Fu J (2012) Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu lake, China. Environ Toxicol Chem 31:1478–1484

    Article  CAS  Google Scholar 

  • Chen D, Letcher RJ, Chu SG (2012) Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography-tandem quadrupole mass spectrometry. J Chromatogr A 1220:169–174

    Article  CAS  Google Scholar 

  • Chen GL, Jin YX, Wu Y, Liu L, Fu ZW (2015) Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption. Environ Toxicol Pharmacol 40:310–318

    Article  CAS  Google Scholar 

  • Chen HY, Wang PP, Du ZK, Wang GW, Gao SX (2018) Oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish (Danio rerio) induced by tris(1,3-dichloro-2-propyl) phosphate. Aquat Toxicol 194:37–45

    Article  CAS  Google Scholar 

  • Cho KJ, Hirakawa T, Mukai T, Takimoto K, Okada M (1996) Origin and stormwater runoff of TCP (tricresyl phosphate) isomers. Water Res 30:1431–1438

    Article  CAS  Google Scholar 

  • Choo G, Cho HS, Park K, Lee JW, Kim P, Oh JE (2018) Tissue-specific distribution and bioaccumulation potential of organophosphate flame retardants in crucian carp. Environ Pollut 239:161–168

    Article  CAS  Google Scholar 

  • Chung HW, Ding WH (2009) Determination of organophosphate flame retardants in sediments by microwave-assisted extraction and gas chromatography-mass spectrometry with electron impact and chemical ionization. Anal Bioanal Chem 395:2325–2334

    Article  CAS  Google Scholar 

  • Cristale J, Garcia Vazquez A, Barata C, Lacorte S (2013) Priority and emerging flame retardants in rivers: occurrence in water and sediment, daphnia magna toxicity and risk assessment. Environ Int 59:232–243

    Article  CAS  Google Scholar 

  • Crump D, Chiu S, Kennedy SW (2012) Effects of tris(1,3-dichloro-2-propyl) phosphate and tris(1-chloropropyl) phosphate on cytotoxicity and mRNA expression in primary cultures of avian hepatocytes and neuronal cells. Toxicol Sci 126:140–148

    Article  CAS  Google Scholar 

  • Dasgupta S, Vliet SM, Kupsco A, Leet JK, Altomare D, Volz DC (2017) Tris(1,3-dichloro-2-propyl) phosphate disrupts dorsoventral patterning in zebrafish embryos. PeerJ 5:e4156

  • Dasgupta S, Cheng V, Vliet SM, Mitchell CA, Volz DC (2018) Tris(1,3-dichloro-2-propyl) phosphate exposure during early-blastula alters the normal trajectory of zebrafish embryogenesis. Birth Defects Res 110:762–762

    Google Scholar 

  • David MD, Seiber JN (1999) Analysis of organophosphate hydraulic fluids in US Air Force base soils. Arch Environ Contam Toxicol 36:235–241

    Article  CAS  Google Scholar 

  • Deng YF, Zhang Y, Qiao RX, Bonila MM, Yang XL, Ren HQ et al (2018) Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (mus musculus). J Hazard Mater 357:348–354

    Article  CAS  Google Scholar 

  • Dishaw LV, Powers CM, Ryde IT, Roberts SC, Seidler FJ, Slotkin TA, Stapleton HM (2011) Is the PentaBDE replacement, tris (1,3-dichloropropyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in pc12 cells. Toxicol Appl Pharmacol 256:281–289

    Article  CAS  Google Scholar 

  • Eulaers I, Jaspers VLB, Halley DJ, Lepoint G, Nygard T, Pinxten R et al (2014) Brominated and phosphorus flame retardants in white-tailed eagle Haliaeetus albicilla nestlings: bioaccumulation and associations with dietary proxies (delta c-13, delta n-15 and delta s-34). Sci Total Environ 478:48–57

    Article  CAS  Google Scholar 

  • Follmann W, Wober J (2006) Investigation of cytotoxic, genotoxic, mutagenic, and estrogenic effects of the flame retardants tris-(2-chloroethyl)-phosphate (TCEP) and tris-(2-chloropropyl)-phosphate (TCPP) in vitro. Toxicol Lett 161:124–134

    Article  CAS  Google Scholar 

  • Giulivo M, Capri E, Kalogianni E, Milacic R, Majone B, Ferrari F, Eljarrat E, Barceló D (2017) Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins. Sci Total Environ 586:782–791

    Article  CAS  Google Scholar 

  • Greaves AK, Letcher RJ (2014) Comparative body compartment composition and in ovo transfer of organophosphate flame retardants in North American great lakes herring gulls. Environ Sci Technol 48:7942–7950

    Article  CAS  Google Scholar 

  • Green N, Schlabach M, Bakke T, Brevik EM, Dye C, Herzke D, Huber S, Plosz B, Remberger M, Schoyen M, Uggerud HT, Vogelsang C (2008) In: Norwegian Pollution Control Agency (ed) Screening of selected metals and new organic contaminants 2007

    Google Scholar 

  • Gu YX, Yang Y, Wan B, Li MJ, Guo LH (2018) Inhibition of o-linked n-acetylglucosamine transferase activity in pc12 cells - a molecular mechanism of organophosphate flame retardants developmental neurotoxicity. Biochem Pharmacol 152:21–33

    Article  CAS  Google Scholar 

  • He C, Wang XY, Thai P, Baduel C, Gallen C, Banks A, Bainton P, English K, Mueller JF (2018) Organophosphate and brominated flame retardants in Australian indoor environments: levels, sources, and preliminary assessment of human exposure. Environ Pollut 235:670–679

    Article  CAS  Google Scholar 

  • Hoffman K, Garantziotis S, Birnbaum LS, Stapleton HM (2015) Monitoring indoor exposure to organophosphate flame retardants: hand wipes and house dust. Environ Health Perspect 123:160–165

    Article  CAS  Google Scholar 

  • Ingerowski G, Friedle A, Thumulla J (2001) Chlorinated ethyl and isopropyl phosphoric acid triesters in the indoor environment - an inter-laboratory exposure study. Indoor Air 11(3):145–149

  • Kawagoshi Y, Fukunaga I, Itoh H (1999) Distribution of organophosphoric acid trimesters between water and sediment at a sea-based solid waste disposal site. J Mater Cycles Waste Manag 1:53–61

    CAS  Google Scholar 

  • Kefeni KK, Okonkwo JO, Olukunle OI, Botha BM (2011) Brominated flame retardants: sources, distribution, exposure pathways, and toxicity. Environ Rev 19:238–253

    Article  CAS  Google Scholar 

  • Kim JW, Isobe T, Chang KH, Amano A, Maneja RH, Zamora PB, Siringan FP, Tanabe S (2011) Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from manila bay, the Philippines. Environ Pollut 159:3653–3659

    Article  CAS  Google Scholar 

  • Kim JW, Isobe T, Muto M, Tue NM, Katsura K, Malarvannan G, Sudaryanto A, Chang KH, Prudente M, Viet PH, Takahashi S, Tanabe S (2014) Organophosphorus flame retardants (pfrs) in human breast milk from several Asian countries. Chemosphere 116:91–97

    Article  CAS  Google Scholar 

  • Kim S, Jung J, Lee I, Jung D, Youn H, Choi K (2015) Thyroid disruption by triphenyl phosphate, an organophosphate flame retardant, in zebrafish (danio rerio) embryos/larvae, and in gh3 and frtl-5 cell lines. Aquat Toxicol 160:188–196

    Article  CAS  Google Scholar 

  • Li J, Ma X, Su G, Giesy JP, Xiao Y, Zhou B, Letcher RJ, Liu C (2016) Multigenerational effects of tris(1,3-dichloro-2-propyl) phosphate on the free-living ciliate protozoa Tetrahymena thermophila exposed to environmentally relevant concentrations and after subsequent recovery. Environ Pollut 218:50–58

    Article  CAS  Google Scholar 

  • Li F, Wang L, Ji C, Wu H, Zhao J, Tang J (2017) Toxicological effects of tris(2-chloropropyl) phosphate in human hepatic cells. Chemosphere 187:88–96

    Article  CAS  Google Scholar 

  • Li D, Wang P, Wang C, Fan X, Wang X, Hu B (2018) Combined toxicity of organophosphate flame retardants and cadmium to Corbicula fluminea in aquatic sediments. Environ Pollut 243:645–653

    Article  CAS  Google Scholar 

  • Liu X, Ji K, Choi K (2012) Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in h295r and MVLN cell lines and in zebrafish. Aquat Toxicol 114:173–181

    Article  CAS  Google Scholar 

  • Liu X, Ji K, Jo A, Moon HB, Choi K (2013) Effects of TDCPP or TPP on gene transcriptions and hormones of HPG axis, and their consequences on reproduction in adult zebrafish (Danio rerio). Aquat Toxicol 134:104–111

    Google Scholar 

  • Ma YQ, Cui KY, Zeng F, Wen JX, Liu H, Zhu F, Ouyang G, Luan T, Zeng Z (2013) Microwave-assisted extraction combined with gel permeation chromatography and silica gel cleanup followed by gas chromatography-mass spectrometry for the determination of organophosphorus flame retardants and plasticizers in biological samples. Anal Chim Acta 786:47–53

    Article  CAS  Google Scholar 

  • Makinen MS, Makinen MR, Koistinen JT, Pasanen AL, Pasanen PO, Kalliokoski PJ et al (2009) Respiratory and dermal exposure to organophosphorus flame retardants and tetrabromobisphenol A at five work environments. Environ Sci Technol 43:941–947

    Article  CAS  Google Scholar 

  • Marklund A, Andersson B, Haglund P (2003) Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere 53:1137–1146

    Article  CAS  Google Scholar 

  • Marklund A, Andersson B, Haglund P (2005) Organophosphorus flame retardants and plasticizers in air from various indoor environments. J Environ Monit 7:814–819

    Article  CAS  Google Scholar 

  • Martinez-Carballo E, Gonzalez-Barreiro C, Sitka A, Scharf S, Gans O (2007) Determination of selected organophosphate esters in the aquatic environment of Austria. Sci Total Environ 388:290–299

    Article  CAS  Google Scholar 

  • Matthews JC, Harder WL, Richardson WK, Fisher RG, Al-karmi AM, Crum LA, Dinno MA (1993) Inactivation of firefly luciferase and rat erythrocyte ATPase by ultrasound. Membr Biochem 10(4):213–220

  • Mihajlovic I, Miloradov MV, Fries E (2011) Application of Twisselmann extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil. Environ Sci Technol 45:2264–2269

    Article  CAS  Google Scholar 

  • Mokra K, Bukowski K, Woźniak K (2018) Effects of tris(1-chloro-2-propyl)phosphate and tris(2-chloroethyl)phosphate on cell viability and morphological changes in peripheral blood mononuclear cells (in vitro study). Hum Exp Toxicol 37(12):1336–1345

  • Moller A, Sturm R, Xie ZY, Cai MH, He JF, Ebinghaus R (2012) Organophosphorus flame retardants and plasticizers in airborne particles over the Northern Pacific and Indian Ocean toward the polar regions: evidence for global occurrence. Environ Sci Technol 46:3127–3134

    Article  CAS  Google Scholar 

  • Ni Y, Kumagai K, Yanagisawa Y (2007) Measuring emissions of organophosphate flame retardants using a passive flux sampler. Atmos Environ 41:3235–3240

    Article  CAS  Google Scholar 

  • Nomeir AA, Kato S, Matthews HB (1981) The metabolism and disposition of tris(1,3-dichloro-2-propyl) phosphate (Fyrol fr-2) in the rat. Toxicol Appl Pharmacol 57:401–413

    Article  CAS  Google Scholar 

  • OECD (1995) Risk reduction monograph no. 3: selected brominated flame retardants background and national experience with reducing risk. Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • Oliveri AN, Ortiz E, Levin ED (2018) Developmental exposure to an organophosphate flame retardant alters later behavioral responses to dopamine antagonism in zebrafish larvae. Neurotoxicol Teratol 67:25–30

    Article  CAS  Google Scholar 

  • Reemtsma T, Quintana JB, Rodil R, Garcia-Lopez M, Rodriguez I (2008) Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate. Trac-Trend Anal Chem 27:727–737

    Article  CAS  Google Scholar 

  • Regnery J, Püttmann W, Merz C, Berthold G (2011) Occurrence and distribution of organophosphous flame retardants and plastizers in anthropogenically affected groundwater. J Environ Monit 13:347–354

    Article  CAS  Google Scholar 

  • Ricking M, Schwarzbauer J, Franke S (2003) Molecular markers of anthropogenic activity in sediments of the Havel and Spree rivers (Germany). Water Res 37:2607–2617

    Article  CAS  Google Scholar 

  • Rodil R, Quintana JB, Concha-Grana E, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D (2012) Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 86:1040–1049

    Article  CAS  Google Scholar 

  • Saeger VW, Hicks O, Kaley RG, Michael PR, Mieure JP, Tucker ES (1979) Environmental fate of selected phosphate esters. Environ Sci Technol 13:840–844

    Article  CAS  Google Scholar 

  • Saito I, Onuki A, Seto H (2007) Indoor organophosphate and polybrominated flame retardants in Tokyo. Indoor Air 17:28–36

    Article  CAS  Google Scholar 

  • Salamova A, Ma YN, Venier M, Hites RA (2014) High levels of organophosphate flame retardants in the great lakes atmosphere. Environ Sci Tech Lett 1:8–14

    Article  CAS  Google Scholar 

  • Schang G, Robaire B, Hales BF (2016) Organophosphate flame retardants act as endocrine-disrupting chemicals in MA-10 mouse tumor Leydig cells. Toxicol Sci 150:499–509

    Article  CAS  Google Scholar 

  • Schreder ED, La Guardia MJ (2014) Flame retardant transfers from U.S. households (Dust and Laundry Wastewater) to the aquatic environment. Environ Sci Technol 48(19):11575–11583

  • Sjodin A, Carlsson H, Thuresson K, Sjolin S, Bergman Å, Ostman C (2001) Flame retardants in indoor air at an electronics recycling plant and at other work environments. Environ Sci Technol 35:448–454

    Article  CAS  Google Scholar 

  • Somkuti SG, Lapadula DM, Chapin RE, Lamb JC, Abou-Donia MB (1987) Testicular toxicity following oral administration of tri-o-cresyl phosphate (TOCP) in roosters. Toxicol Lett 37:279–290

    Article  CAS  Google Scholar 

  • Staaf T, Ostman C (2005) Organophosphate triesters in indoor environments. J Environ Monit 7:883–887

    Article  CAS  Google Scholar 

  • Stasinska A, Heyworth J, Reid A, Callan A, Odland JO, Duong PT et al (2014) Polybrominated diphenyl ether (PBDE) concentrations in plasma of pregnant women from Western Australia. Sci Total Environ 493:554–561

    Article  CAS  Google Scholar 

  • Su G, Crump D, Letcher RJ, Kennedy SW (2014) Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes. Environ Sci Technol 48(22):13511–13519

  • Sundkvist AM, Olofsson U, Haglund P (2010) Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk. J Environ Monit 12:943–951

    Article  CAS  Google Scholar 

  • Ta N, Li CN, Fang YJ, Liu HL, Lin BC, Jin H, Tian L, Zhang H, Zhang W, Xi Z (2014) Toxicity of TDCPP and TCEP on pc12 cell: changes in CAMKII, gap43, tubulin and NF-H gene and protein levels. Toxicol Lett 227:164–171

    Article  CAS  Google Scholar 

  • Tokumura M, Hatayama R, Tatsu K, Naito T, Takeda T, Raknuzzaman M, al-Mamun MH, Masunaga S (2017) Organophosphate flame retardants in the indoor air and dust in cars in Japan. Environ Monit Assess 189:48

    Article  CAS  Google Scholar 

  • Wang QW, Lam JCW, Man YC, Lai NLS, Kwok KY, Guo YY et al (2015a) Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish. Aquat Toxicol 158:108–115

    Article  CAS  Google Scholar 

  • Wang RM, Tang JH, Xie ZY, Mi WY, Chen YJ, Wolschke H, Tian C, Pan X, Luo Y, Ebinghaus R (2015b) Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai sea, North China. Environ Pollut 198:172–178

    Article  CAS  Google Scholar 

  • Wang D, Zhu W, Chen L, Yan J, Teng M, Zhou Z (2018) Neonatal triphenyl phosphate and its metabolite diphenyl phosphate exposure induce sex- and dose-dependent metabolic disruptions in adult mice. Environ Pollut 237:10–17

    Article  CAS  Google Scholar 

  • Wei GL, Li DQ, Zhuo MN, Liao YS, Xie ZY, Guo TL, Li JJ, Zhang SY, Liang ZQ (2015) Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure. Environ Pollut 196:29–46

    Article  CAS  Google Scholar 

  • Xiang P, Liu RY, Li C, Gao P, Cui XY, Ma LQ (2017) Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells: implications for human health. Environ Pollut 230:22–30

    Article  CAS  Google Scholar 

  • Yang WQ, Zhao F, Fang YJ, Li L, Li CN, Ta N (2018) H-1-nuclear magnetic resonance metabolomics revealing the intrinsic relationships between neurochemical alterations and neurobehavioral and neuropathological abnormalities in rats exposed to tris(2-chloroethyl)phosphate. Chemosphere 200:649–659

    Article  CAS  Google Scholar 

  • Ye N, Wang Z, Fang H, Wang S, Zhang F (2017) Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus. J Environ Sci Health A 52:555–560

    Article  CAS  Google Scholar 

  • Zeng XY, He LX, Cao SX, Ma ST, Yu ZQ, Gui HY, Sheng G, Fu J (2014) Occurrence and distribution of organophosphate flame retardants/plasticizers in wastewater treatment plant sludges from the Pearl River Delta, China. Environ Toxicol Chem 33:1720–1725

    Article  CAS  Google Scholar 

  • Zhang ZH, Rengel Z, Meney K, Pantelic L, Tomanovic R (2011) Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species. J Hazard Mater 189:119–126

    Article  CAS  Google Scholar 

  • Zhao F, Wan Y, Zhao H, Hu W, Mu D, Webster TF, Hu J (2016) Levels of blood organophosphorus flame retardants and association with changes in human sphingolipid homeostasis. Environ Sci Technol 50:8896–8903

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the language assistance of Dr. Zhang Zhen.

Funding

This work was financially supported by Zhejiang Provincial Natural Science Foundation of China (No. LY18B070008), the Natural Science Foundation of China (No. 21407038), the Research Foundation of Yiwu Parkway Environmental Protection Co., Ltd. (KYH203118012), and the Research Foundation of Hangzhou Dianzi University (KYS205618039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Du or Junhong Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Hongwen Sun

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Presented the possible organism health hazards related to OPFRs exposure.

2. Identified the current research deficiencies in this area.

3. Summarized the compound toxicity of OPFRs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Li, H., Xu, S. et al. A review of organophosphorus flame retardants (OPFRs): occurrence, bioaccumulation, toxicity, and organism exposure. Environ Sci Pollut Res 26, 22126–22136 (2019). https://doi.org/10.1007/s11356-019-05669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05669-y

Keywords

Navigation