Skip to main content

Advertisement

Log in

The brighter side of e-waste—a rich secondary source of metal

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This article details the electronic waste (e-waste) generation, their composition, health, and environment hazards, and legal rules for disposal as well as their significance as a potential secondary source of metals and other components. Moreover, valuable metal extraction technologies from the e-waste are reviewed in general and waste cell phones in particular. E-waste is nowadays preferentially used for recovery of metals mainly from printed circuit boards (PCBs). Different techniques, namely pyrometallurgy, hydrometallurgy, and biohydrometallurgy used for metal extraction from e-waste are swotted. The economic and environmental valuation features of these technologies are also included. Compared to other methods, biohydrometallurgy is the method of choice, as in it natural components like air and water are used, has low operating and maintenance cost, and operate at ambient temperature and pressure. Microbial aspects of metal extraction from e-waste are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  • Adhapure NN, Dhakephalkar PK, Dhakephalkar AP, Tembhurkar VR, Rajgure AV, Deshmukh AM (2014) Use of large pieces of printed circuit boards for bioleaching to avoid ‘precipitate contamination problem’ and to simplify overall metal recovery. Methods X 1:181–186

    CAS  Google Scholar 

  • Agnihotri V (2011) E-waste in India. Research Unit in Larrdis, Rajya Sabha Secretariat, Rajya Sabha, pp 1–27

    Google Scholar 

  • Akinseye VO (2013) Electronic Waste components in developing countries : harmless substances or potential carcinogen. Ann Rev Res Biol 3:131–147

    Google Scholar 

  • Arshadi M, Mousavi SM (2014) Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching : statistical evaluation and optimization. Bioresour Technol 174:233–242

    Article  CAS  Google Scholar 

  • Baba A, Adekola F, Ayodele D (2010) Study of metals dissolution from a brand of mobile. Metal Miner Eng 16:269–276

    CAS  Google Scholar 

  • Baba A, Adekola F, Olumodeji O, Misitura L (2011) Recovery of valuable metals from spent mobile phone wastes. Part I : dissolution kinetics evaluation. Adv Appl Sci Res 2:117–127

    CAS  Google Scholar 

  • Balde C, Forti V, Gray V, Kuehr R, Stegmann P (2017) The Global E-waste Monitor-2017. United Nations University (UNU), International Telecommunication Union (ITU) and International Solid Waste Association (ISWA), Bonn/Geneva/Vienna

    Google Scholar 

  • Baniasadi M, Vakilchap F, Bahaloo-Horeh N, Mousavi SM, Farnaud S (2019) Advances in bioleaching as a sustainable method for metal recovery from e-waste: a review. J Ind Eng Chem 76:75–90

    Article  CAS  Google Scholar 

  • Bayat O, Arsian V, Bayat B (2011) Use of Aspergillus niger in the bioleaching of colemanite for the production of boric acid. Electron J Biotechnol 14:1–10

    Article  CAS  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

    Article  CAS  Google Scholar 

  • Brandl H, Lehmann S, Faramarzi MA, Martinelli D (2008) Biomobilization of silver, gold and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94:14–17

    Article  CAS  Google Scholar 

  • Brandl H, Stagars M, Faramarzi MA (2003) A novel type of microbial metal mobilization : cyanogenic bacteria and fungi solubilize metals as cyanide complexes. In: Tsezos M, Hatzikioseyian A, Remoundaki E (eds) Biohydrometallurgy: a sustainable technology in evolution, Proceedings of 15th International Biohydrometallurgy Symposium. Nereus Group, Athens, pp 457–463

    Google Scholar 

  • Brigden K, Labunska I, Santillo D, Alsopp M (2005) Recycling of electronic wastes in China and India: workplace and environmental contamination. Greenpeace Research Laboratories. University of Exeter, UK.

  • Campbell SC, Olson GJ, Clark TR, McFeters G (2001) Biogenic production of cyanide and its application to gold recovery. J Ind Microbiol Biotechnol 26:134–139

    Article  CAS  Google Scholar 

  • Castric PA (1977) Glycine metabolism by Pseudomonas aeruginosa : hydrogen cyanide biosynthesis. J Bacteriol 130:826–831

    Article  CAS  Google Scholar 

  • Chatterjee R (2007) E-waste recycling spews dioxins into the air. Environ Sci Technol 41:5577

    CAS  Google Scholar 

  • Chatterjee S, Kumar K (2009) Effective electronic waste management and recycling process involving formal and non-formal sectors. Int J Phy Sci 4:893–905

    CAS  Google Scholar 

  • Chauhan G, Jadhao PR, Pant KK, Nigam KDP (2018) Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment : challenges and opportunities- a review. J Environ Chem Eng 6:1288–1304

    Article  CAS  Google Scholar 

  • Chen S, Yang Y, Liu C, Dong F, Liu B (2015) Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere 141:162–168

    Article  CAS  Google Scholar 

  • Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256

    Article  CAS  Google Scholar 

  • Das A, Ari V, Mehrotra SP (2009) A novel flowsheet for the recovery of metal values from waste printed circuit boards. Resour Conserv Recycl 53:464–469

    Article  Google Scholar 

  • Dave SR, Shah MB, Tipre DR (2016) E-waste : metal pollution threat or metal resource ? J Adv Res Biotechnol 1:1–14

    Article  Google Scholar 

  • Dave SR, Sodha AB, Tipre DR (2018) Microbial technology for metal recovery from e-waste printed circuit boards. J Bacteriol Mycol: OA 6:241–247

    Google Scholar 

  • Dave SR, Sodha AB, Tipre DR (2020) Microbial processes for treatment of e-waste printed circuit boards and their mechanisms for metal(s) solubilization. In: Chandra R, Sobti RC (eds) Microbes for Sustainable Development and Bioremediation. CRC Press, New York, pp 131–144

    Google Scholar 

  • Dave SR, Tipre DR (2019) Diversity of iron and sulphur oxidizers in sulphide mine leachates, In: Microbial Diversity in Ecosystem sustainability and Biotechnological Applications, vol. 1, Satayanarayan T, Johri BN, Das SK (eds.), ch. 10, Springer Nature, Singapore, pp 293-317.

  • Ebert J, Bahadir M (2003) Formation of PBDD / F from flame-retarded plastic materials under thermal stress. Environ Int 29:711–716

    Article  CAS  Google Scholar 

  • EU Directive 2002/96/EC of the European parliament and of the council of 27 January 2003 on waste electrical and electronic equipment (WEEE). http://euroa.eu.int/eur-lex/en. Accessed 20 May 2020

  • Faramarzi MA, Brandl H (2006) Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida. FEMS Microbiol Lett 259:47–52

    Article  CAS  Google Scholar 

  • Faramarzi MA, Stagars M, Pensini E, Krebs W, Brandl H (2004) Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113:321–326

    Article  CAS  Google Scholar 

  • Fu K, Wang B, Chen H, Chen M, Chen S (2016) Bioleaching of Al from coarse-grained waste printed circuit boards in a stirred tank reactor. Procedia Environ Sci 31:897–902

    Article  CAS  Google Scholar 

  • Gaidajis G, Angelakoglou K, Aktsoglou D (2010) E-waste : environmental problems and current management. J Eng Sci Technol Rev 3:193–199

    Article  CAS  Google Scholar 

  • Hagelüken C (2006) Recycling of electronic scrap at Umicore precious metals refining. Acta Metall Slovaca 12:111–120

    Google Scholar 

  • Hagelüken C (2008) Opportunities and challenges to recover scarce and valuable metals from electronic devices. In: OECD-UNEP Conference on Resource Efficiency. France, Paris, pp 1–22

    Google Scholar 

  • Hilson G, Monhemius A (2006) Alternatives to cyanide in the gold mining industry: what prospects for the future. J Clean Prod 14:1158–1167

    Article  Google Scholar 

  • https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (2020), accessed on 30th October 2020

  • https://www.ericsson.com/en/mobility-report/reports/november-2019/mobile-subscriptions-outlook, (2020) accessed on 27th May 2020

  • Ilyas S, Anwar MA, Niazi SB, Ghauri MA (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88:180–188

    Article  CAS  Google Scholar 

  • Isidar A, Vossenberg J, Rene ER, Hullebusch ED, Lens PNL (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag 57:149–157

    Article  CAS  Google Scholar 

  • Işıldar A (2016) Biological versus chemical leaching of electronic waste for copper and gold recovery, PhD Thesis, Université Paris-Est Marne-la-Vallée, France, pp 177-206.

  • Jian G, Guo J, Wang X, Sun C, Zhou Z, Yu L, Kong F, Qiu L (2012) Study on separation of cobalt and lithium salts from waste mobile-phone batteries. Procedia Environ Sci 16:495–499

    Article  CAS  Google Scholar 

  • Jing-ying L, Xiu-li X, Wen-quan L (2012) Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Manag 32:1209–1212

    Article  CAS  Google Scholar 

  • Kang D, Chen M, Ogunseitan O (2013) Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ Sci Technol 47:5495–5503

    Article  CAS  Google Scholar 

  • Kaya M (2016) Recovery of metals from electronic waste by physical and chemical recycling processes. Int J Chem Mol Eng 10:259–270

    Google Scholar 

  • Khaliq A, Rhamdhani MA, Brooks G, Masood S (2014) Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources 3:152–179

    Article  Google Scholar 

  • Khatri BR, Sodha AB, Shah MB, Tipre DR, Dave SR (2018) Chemical and biological leaching of metals from cell phone PCB. Sustain Environ Res 28:333–339

    Article  CAS  Google Scholar 

  • Kim E, Kim M, Lee J, Pandey BD (2011) Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. J Hazard Mater 198:206–215

    Article  CAS  Google Scholar 

  • Kita Y, Nishikawa H, Takemoto T (2006) Effects of cyanide and dissolved oxygen concentration on biological Au recovery. J Biotechnol 124:545–551

    Article  CAS  Google Scholar 

  • Kulandaisamy S, Rethinaraj JP, Adaikkalam P, Srinivasan GN, Raghavan M (2003) The aqueous recovery of gold from electronic scrap. JOM 55:35–38

    Article  CAS  Google Scholar 

  • Kumar M, Lee J, Kim M, Jeong J, Yoo K (2014) Leaching of metals from waste printed circuit boards (WPCBs) using sulfuric and nitric acids. Environ Eng Manag J 13:2601–2607

    Article  Google Scholar 

  • Kumar R, Shah DJ (2014) Review: current status of recycling of waste printed circuit boards in India. J Environ Prot 5:9–16

    Article  Google Scholar 

  • Kumar S, Singh R, Singh D, Prasad R, Yadav T (2013) Electronics-waste management. Int J Environ Eng Manage 4:389–396

    Google Scholar 

  • Li J, Liang C, Ma C (2015) Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum. J Mater Cycl Waste Manage 17:529–539

    Article  CAS  Google Scholar 

  • Liang G, Mo Y, Zhou Q (2010) Enzyme and microbial technology novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles. Enzym Microb Technol 47:322–326

    Article  CAS  Google Scholar 

  • Liang G, Tang J, Liu W, Zhou Q (2013) Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). J Hazard Mater 250–251:238–245

    Article  CAS  Google Scholar 

  • Lim S, Schoenung JM (2010) Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities. Waste Manag 30:1653–1660

    Article  CAS  Google Scholar 

  • Lincoln JD, Ogunseitan OA, Shapiro AA, Saphores JM (2007) Leaching assessments of hazardous materials in cellular telephones. Environ Sci Technol 41:2572–2578

    Article  CAS  Google Scholar 

  • Lucheva B, Iliev P, Kolev D (2017) Recovery of gold from electronic waste by iodine-iodide leaching. J Chem Technol Metall 52:326–332

    CAS  Google Scholar 

  • Madrigal-Arias JE, Argumedo-Delira R, Alarcon A, Mendoza-Lopez MR, Garcia-Barradas O, Cruz-Sanchez JS, Ferrera-Cerrato R, Jimenez-Fernandez M (2015) Bioleaching of gold, copper, and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus niger strains. Braz J Microbiol 46:707–713

    Article  CAS  Google Scholar 

  • Mankhand TR, Singh KK, Gupta SK, Das S (2012) Pyrolysis of printed circuit boards. Int J Metall Eng 1:102–107

    Google Scholar 

  • Maragkos KG, Hahladakis JN, Gidarakos E (2013) Qualitative and quantitative determination of heavy metals in waste cellular phones. Waste Manag 33:1882–1889

    Article  CAS  Google Scholar 

  • Marques AC, Cabreea J, Malfatti CF (2013) Printed circuit boards : a review on the perspective of sustainability. J Envir Manage 131:298–306

    Article  CAS  Google Scholar 

  • Michaels R, Corpe WA (1965) Cyanide formation by Chromobacterium violaceum. J Bacteriol 89:106–112

    Article  CAS  Google Scholar 

  • Namias J (2013) The future of electronic waste recycling in the United States: obstacles and domestic solutions. M.S. Thesis. Columbia University, Columbia

  • Natarajan G, Buck S, Shan W, Ting Y (2015) Engineered strains enhance gold biorecovery from electronic scrap. Miner Eng 75:32–37

    Article  CAS  Google Scholar 

  • Natarajan G, Ting Y (2014) Pretreatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery. Bioresour Technol 152:80–85

    Article  CAS  Google Scholar 

  • Natarajan G, Ting YP (2015) Gold biorecovery from e-waste : An improved strategy through spent medium leaching with pH modification. Chemosphere 136:232–238

    Article  CAS  Google Scholar 

  • Needhidasan S, Samuel M, Chidambaram R (2014) Electronic waste – an emerging threat to the environment of urban India. J Environ Health Sci Eng 12:1–9

    Article  CAS  Google Scholar 

  • Pant D, Joshi D, Ypreti MK, Kotnala RK (2011) Chemical and biological extraction of metals present in e-waste : a hybrid technology. Waste Manag 32:979–990

    Article  CAS  Google Scholar 

  • Parker SP (1992) Concise Encyclopedia of Science and Technology. Mc-Graw Hill, New York

    Google Scholar 

  • Patel BC, Sinha MK, Tipre DR, Pillai A, Dave SR (2014) A novel biphasic leaching approach for the recovery of Cu and Zn from polymetallic bulk concentrate. Bioresour Technol 157:310–315

    Article  CAS  Google Scholar 

  • Patel BC, Tipre DR, Dave SR (2012a) Optimization of copper and zinc extractions from polymetallic bulk concentrate and ferric iron regeneration under metallic stress. Hydrometallurgy 117-118:18–23

    Article  CAS  Google Scholar 

  • Patel BC, Tipre DR, Dave SR (2012b) Development of Leptospirillum ferriphilum dominated consortium for ferric iron regeneration and metal bioleaching under extreme stresses. Bioresour Technol 118:483–489

    Article  CAS  Google Scholar 

  • Pathak A, Dastidar MG, Sreekrishnan TR (2009) Bioleaching of heavy metals from sewage sludge using indigenous iron-oxidizing microorganisms : effect of substrate concentration and total solids. World Acad Sci Eng Technol 34:525–530

    Google Scholar 

  • Perkins DN, Brune MN, Nxele T, Sly PD (2014) E-waste: A global hazard. Ann Global Health 80:286–295

    Article  Google Scholar 

  • Pham VA, Ting YP (2009) Gold bioleaching of electronic waste by cyanogenic bacteria and its enhancement with bio-oxidation. Adv Mater Res 73:661–664

    Article  Google Scholar 

  • Pradhan JK, Kumar S (2009) E-waste management : a case study of Bangalore, India. Res J Environ Earth Sci 1:111–115

    Google Scholar 

  • Pradhan JK, Kumar S (2012) Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manag Res 30:1151–1159

    Article  CAS  Google Scholar 

  • Pradhan JK, Kumar S (2014) Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India. Environ Sci Pollut Res 21:7913–7928

    Article  CAS  Google Scholar 

  • Rajarao R, Sahajwalla V, Cayumil R, Park M, Khanna R (2014) Novel approach for processing hazardous electronic waste. Procedia Environ Sci 21:33–41

    Article  CAS  Google Scholar 

  • Rajput JE (2013) E-waste-concept, problems and solution policies in India. Int J Manage Bus Res 3:31–36

    Google Scholar 

  • Rick Le Blanc (2018) E-waste state of the union: recycling facts, figures and the future https://invrecovery.org/e-waste-state-of-the-union-recycling-facts-figures-and-the-future/ accessed on 7 August 2020

  • Sahin M, Akcil A, Erust C, Altynbek S, Gahan CS, Tuncuk A (2015) A potential alternative for precious metal recovery from e-waste : iodine leaching. Sep Sci Technol 50:2587–2595

    CAS  Google Scholar 

  • Saidan M, Brown B, Valix M (2012) Leaching of electronic waste using biometabolised acids. Chin J Chem Eng 20:530–534

    Article  CAS  Google Scholar 

  • Shah MB, Tipre DR, Dave SR (2014) Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones. Waste Manag Res 32:1134–1141

    Article  CAS  Google Scholar 

  • Shah MB, Tipre DR, Purohit MS, Dave SR (2015) Development of two-step process for enhanced biorecovery of Cu–Zn–Ni from computer printed circuit boards. J Biosci Bioeng 220:167–173

    Article  CAS  Google Scholar 

  • Sharma AK, Sharma S, Bagdi U, Gautam P (2017) Copper extraction from the discarded printed circuit board by leaching. Int J Appl Res 3:634–637

    Google Scholar 

  • Sharma N, Kumar M (2011) The wonderful toy of 20th century can be a disaster in 21st century : scenario and policies regarding mobile waste in India. Int J Comp Sci Inform Technol 2:2198–2203

    Google Scholar 

  • Sinha-Khetriwal D, Kraeuchi P, Schwaninger M (2005) A comparison of electronic waste recycling in Switzerland and in India. Environ Impact Assess Rev 25:492–504

    Article  Google Scholar 

  • Sodha AB, Qureshi SA, Khatri BR, Tipre DR, Dave SR (2019a) Enhancement in iron oxidation and multi-metal extraction from waste television printed circuit boards by iron oxidizing Leptospirillum feriphillum isolated from coal sample. Waste Biomass Valori 10:671–680

    Article  CAS  Google Scholar 

  • Sodha AB, Shah MB, Qureshi SA, Tipre DR, Dave SR (2019b) Decouple and compare the role of abiotic factors and developed iron and sulphur oxidizers for enhanced extraction of metals from television printed circuit boards. Sep Sci Technol 54:591–601

    Article  CAS  Google Scholar 

  • Sodha AB, Tipre DR, Dave SR (2019c) Optimization and kinetics of copper cementation from bio-leachate generated during the waste printed circuit board (E-waste) processing. Environ Sustain 2:391–399

    Article  CAS  Google Scholar 

  • Sodha AB, Tipre DR, Dave SR (2020) Optimisation of biohydrometallurgical batch reactor process for copper extraction and recovery from non-pulverized waste printed circuit boards. Hydrometallurgy 191:105170

    Article  CAS  Google Scholar 

  • Sohaili J, Muniyandi K, Mohamad SS (2012) A review on printed circuit board recycling technology. J Emerg Trends Eng Appl Sci 3:12–18

    Google Scholar 

  • Srivastava RR, Ilyas S, Kim H, Choi S, Trinh HB, Ghauri MA, Ilyas N (2020) Biotechnological recycling of critical metals from waste printed circuit boards. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6469

  • Ten W, Ting Y (2003) Bioleaching of electronic scrap material by Aspergillus niger. In: Tsezos M, Hatzikioseyian A, Remoundaki E (eds) Biohydrometallurgy: a sustainable technology in evolution, Proceedings of 15th International Biohydrometallurgy Symposium. Nereus Group, Athens, pp 137–146

    Google Scholar 

  • Thakur P, Kumar S (2020) Metallurgical processes unveil the unexplored “sleeping mines” e- waste: a review. Environ Sci Pollut Res 27:32359–32370

    Article  CAS  Google Scholar 

  • The Greenpeace India (2007) Annual report 2005-2006, deliberate. organised. Systematic. https://www.greenpeace.org/india/en/. Accessed 25 May 2020

  • Ting YP, Tan CC, Pham VA (2008) Cyanide-generating bacteria for gold recovery from electronic scrap material. J Biotechnol 136S:5647–5677

    Google Scholar 

  • Tipre DR, Dave SR (2004) Bioleaching process for Cu–Pb–Zn bulk concentrate at high pulp density. Hydrometallurgy 75:37–43

    Article  CAS  Google Scholar 

  • Link T (2003) Scrapping the Hi-tech Myth. Comp Waste India:1–58

  • Tran CD, Lee JC, Pandey BD, Jeong J, Yoo K, Huynh TH (2011) Bacterial cyanide generation in the presence of metal ions (Na+, Mg2+, Fe2+, Pb2+) and gold bioleaching from waste PCBs. J Chem Eng Jpn 44:692–700

    Article  CAS  Google Scholar 

  • Tripathi A, Kumar M, Sau DC, Agrawal A, Chakravarty S, Mankhand TR (2012) Leaching of gold from the waste mobile phone printed circuit boards (PCBs) with ammonium thiosulphate. Int J Metallur Eng 1:17–21

    Article  Google Scholar 

  • Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag 31:45–58

    Article  CAS  Google Scholar 

  • Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2011) Aqueous metal recovery techniques from e-scrap : hydrometallurgy in recycling. Miner Eng 25:28–37

    Article  CAS  Google Scholar 

  • Wang J, Chen M, Chen H, Luo T, Xu Z (2012) Leaching study of spent Li-ion batteries. Procedia Environ Sci 16:443–450

    Article  CAS  Google Scholar 

  • Weber R, Kuch B (2003) Relevance of BFRs and thermal conditions on the formation pathways of brominated and brominated – chlorinated dibenzodioxins and dibenzofurans. Environ Int 29:699–710

    Article  CAS  Google Scholar 

  • Wei L, Liu Y (2012) Present status of e-waste disposal and recycling in China. Procedia Environ Sci 16:506–514

    Article  Google Scholar 

  • Willey JM, Sherwood LM, Woolverton CJ (2008) Prescott, Harlley and Klein’s Microbiology. Mc-Graw-Hill Companies, Singapore

    Google Scholar 

  • Willner J (2012) Leaching of selected heavy metals from electronic waste in the presence of the At. ferrooxidans bacteria. J Achiev Mater Manuf Eng 55:860–863

    Google Scholar 

  • Willner J, Fornalczyk A (2013) Extraction of metals from electronic waste by bacterial leaching. Environ Prot Eng 39:197–208

    CAS  Google Scholar 

  • Yang Y, Chen S, Li S, Chen M, Chen H, Liu B (2014) Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect. J Biotechnol 173:24–30

    Article  CAS  Google Scholar 

  • Yuan J, Chen L, Chen D, Guo H, Bi X, Ju Y, Jiang P, Shi J, Yu Z, Yang J, Li L, Jiang Q, Sheng G, Fu J, Wu T, Chen X (2008) Elevated serum polybrominated diphenyl ethers and thyroid-stimulating hormone associated with lymphocytic micronuclei in Chinese workers from an e-waste dismantling site. Environ Sci Technol 42:2195–2200

    Article  CAS  Google Scholar 

  • Yuxin YU, Jianjun LI (2004) Recovery and disposal of waste battery in China. Sichuan Environ 23:94–96

    Google Scholar 

  • Zeng X, Li J, Liu L (2015) Solving spent lithium-ion battery problems in China : opportunities and challenges. Renew Sust Energ Rev 52:1759–1767

    Article  CAS  Google Scholar 

  • Zhang Y, Liu S, Xie H, Zeng X, Li J (2012) Current status on leaching precious metals from waste printed circuit boards. Procedia Environ Sci 16:560–568

    Article  CAS  Google Scholar 

  • Zhou Q, Zhu W (2003) Recovery of gold from waste computer and its accessories. China Resour Comprehen Utiliz 7:31–35

    Google Scholar 

Download references

Funding

This work was supported by Department of Biotechnology (DBT), New Delhi, India (Grant # BT/PR15404/BCE/8/1148/2015)

Author information

Authors and Affiliations

Authors

Contributions

BRK is responsible of investigation, literature survey and writing original draft, SCT is responsible of manuscript review and revision, DRT is responsible of supervision, project administration, manuscript review and revision, SRD is responsible for conceptualization, visualization; manuscript review and editing.

All authors have participated in the article preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Devayani R. Tipre.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tipre, D.R., Khatri, B.R., Thacker, S.C. et al. The brighter side of e-waste—a rich secondary source of metal. Environ Sci Pollut Res 28, 10503–10518 (2021). https://doi.org/10.1007/s11356-020-12022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12022-1

Keywords

Navigation