Skip to main content
Log in

Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd- and Pb-contaminated soil and their physiological effects on Vicia faba L.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phytoremediation is an important solution to soil pollution management. The goal of this study is to determine the biosorption ability of the two selected fungi (Aspergillus niger and Penicillium chrysosporium) under heavy metal stress on faba bean plants. The fungal strains produced phytohormones, siderophore, ACC deaminase, and secondary metabolites. The biosorption capacity of A. niger and P. chrysosporium was 0.09 and 0.06 mg g−1 and 0.5 and 0.4 mg g−1 in media containing Cd and Pb, respectively. Fourier transform infrared spectroscopy of the fungal cell wall show primary functional groups like hydroxyl, amide, carboxyl, phosphoryl, sulfhydryl, and nitro. Therefore, A. niger and P. chrysosporium were inoculated to soils, and then the faba bean seeds were sown. After 21 days of sowing, the plants were irrigated with water to severe as control, with 100 mg L−1 of Cd and 200 mg L−1 of Pb. The results show that Cd and Pb caused a significant reduction in morphological characteristics, auxin, gibberellins, photosynthetic pigments, minerals content, and antioxidant enzymes as compared to control plants but caused a substantial boost in abscisic acid, ethylene, electrolyte leakage, lipid peroxidation, glutathione, proline, superoxide dismutase, secondary metabolites, and antioxidant capacity. In inoculated plants, metal-induced oxidative stress was modulated by inhibiting the transport of metal and decreased electrolyte leakage and lipid peroxidation. Finally, the inoculation of endophytic fungi contributed actively to the absorption of heavy metals and decreased their content in soil and plants. This could be utilized as an excellent technique in the fields of heavy metal–contaminated sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abd El-Rahman SS, Mazen MM, Mohamed HI, Mahmoud NM (2012) Induction of defense related enzymes and phenolic compounds in lupine (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. Eur J Plant Pathol 134:105–116

    CAS  Google Scholar 

  • Abd-Allah EF, Abeer H, Alqarawi AA, Hend A (2015) Alleviation of adverse impact of cadmium stress in sunflower (Helianthus annuus L.) by arbuscular mycorrhizal fungi. Pak J Bot 47:785–795

    CAS  Google Scholar 

  • Abdelhameed RE, Metwally RA (2019) Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. Int J Phytoremediat 21:663–671

    CAS  Google Scholar 

  • Abu-Shahba MS, Mansour MM, Mohamed HI, Sofy MR (2021) Comparative cultivation and biochemical analysis of iceberg lettuce grown in sand soil and hydroponics with or without microbubbles and macrobubbles. J Soil Sci Plant Nutr 21:389–403

    CAS  Google Scholar 

  • Akhtar M, Sastry K, Mohan P (1996) Mechanism of metal ion biosorption by fungal biomass. Biometals 9:21–28

    Google Scholar 

  • Akladious SA, Mohamed HI (2017) Physiological role of exogenous nitric oxide in improving performance, yield and some biochemical aspects of sunflower plant under zinc stress. Acta Biol Hung 68:101–114

    CAS  Google Scholar 

  • Ali A, Bilal S, Khan AL, Mabood F, Al-Harrasi A, Lee I (2019) Endophytic Aureobasidium pullulans BSS6 assisted developments in phytoremediation potentials of Cucumis sativus under Cd and Pb stress. J Plant Interact 14(1):303–313

    CAS  Google Scholar 

  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby CL (1974) Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford/London, UK

    Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI, Abd-Elsalam KA (2012) Examination of correlations between several biochemical components and powdery mildew resistance of flax cultivars. Plant Pathol J 28(2):149–155

    CAS  Google Scholar 

  • Amin N, Hussain A, Alamzeb S, Begum S (2013) Accumulation of heavy metals in edible parts of vegetables irrigated with waste-water and their daily intake to adults and children, District Mardan Pakistan. Food Chem 136:1515–1523

    Google Scholar 

  • Amirjani M (2012) Effects of cadmium on wheat growth and some physiological factors. Int J Forest Soil Erosion 2(1):50–58

    Google Scholar 

  • Andrews MY, Santelli CM, Duckworth OW (2016) Layer plate CAS assay for the quantitation of siderophore production and determination of exudation patterns for fungi. J Microbiol Methods 121:41–43

    CAS  Google Scholar 

  • Awasthi S, Chauhan R, Srivastava S, Tripathi RD (2017) The journey of arsenic from soil to grain in rice. Front Plant Sci 8:1007

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Bilal S, Shahzad R, Khan AL, Kang SM, Imran QM, Al-Harrasi A, Yun BW, Lee IJ (2018) Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and Bacteria Sphingomonas sp. LK11 to Glycine max L. Regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Front. Plant Sci 9:1273

    Google Scholar 

  • Brighente IMC, Dias M, Verdi LG, Pizzolatti MG (2007) Antioxidant activity and total phenolic content of some brazilian species. Pharm Biol 45:156–161

    CAS  Google Scholar 

  • Cao F, Chen F, Sun H, Zhang G, Chen ZH, Wu F (2014) Genomewide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genomics 15(1):611–625

    Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalases and peroxidases. In: Methods in Enzymology. Elsevier Inc., pp 764–775

    Google Scholar 

  • Chun OK, Kim DO, Lee CY (2003) Superoxide radical scavenging activity of the major polyphenols in fresh plums. J Agric Food Chem 51:8067–8072

    CAS  Google Scholar 

  • Cui S, Zhou Q, Chao L (2007) Potential hyper-accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environ Geol 51:1043–1048

    CAS  Google Scholar 

  • Devi SS, Sreenivasulu Y, Rao KVB (2017) Protective role of Trichoderma logibrachiatum (WT2) on Lead induced oxidative stress in Helianthus annus L. Indian J Exp Biol 55:235–241

    CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101

    CAS  Google Scholar 

  • Dinakar N, Nagajyothi PC, Suresh S, Udaykiran Y, Damodharam T (2008) Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. J Environ Sci 20:199–206

    CAS  Google Scholar 

  • Durley RC, Kannangara T, Simpson G (1982) Diurnal changes of leaf water potential, abscisic acid, phaseic acid and indole-3-acetic acid in field grown Sorghum bicolor L. Moench Zeitschrift für Pflanzenphysiol 106(1):55–61

    Google Scholar 

  • Dutta P, Karmakar A, Majumdar S, Roy S (2018) Klebsiella pneumoniae (HR1) assisted alleviation of Cd (II) toxicity in Vigna mungo: a case study of biosorption of heavy metal by an endophytic bacterium coupled with plant growth promotion. Eur Med J Environ Integ 3(1):27

    Google Scholar 

  • Eckardt NA (2010) Redox regulation of auxin signaling and plant development. Plant Cell 22:295

    CAS  Google Scholar 

  • Eklund DM, Thelander M, Landberg K, Staldal V, Nilsson A, Johansson M, Valsecchi I, Pederson ERA, Kowalczyk M, Ljung K, Ronne H, Sundberg E (2010) Homologues of the Arabidopsis thaliana SHI/STY/ LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development 137:1275–1284

    CAS  Google Scholar 

  • El-Beltagi HS, Mohamed HI (2013) Alleviation of cadmium toxicity in Pisum sativum L. seedlings by calcium chloride. Not Bot Horti Agrobo 41(1):1–12

    Google Scholar 

  • El-Beltagi HS, Mohamed HI, Megahed BM, Gamal M, Safwat G (2018) Evaluation of some chemical constituents, antioxidant, antibacterial and anticancer activities of Beta vulgaris L. root. Fres EnviroN Bull 27:6369–6378

    CAS  Google Scholar 

  • El-Beltagi H, Mohamed HI, Safwat G, Gamal M, Megahed B (2019a) Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanzen 71:113–122

    CAS  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Elmelegy AA, Eldesoky SE, Safwat G (2019b) Phytochemical screening, antimicrobial, antioxidant, anticancer activities and nutritional values of cactus (Opuntia Ficus Indicia) pulp and peel. Fresenius Environ Bull 28(2A):1534–1551

    Google Scholar 

  • El-Beltagi HS, Sofy MR, Aldaej MI, Mohamed HI (2020) Silicon alleviates copper toxicity in flax plants by up-regulating antioxidant defense and secondary metabolites and decreasing oxidative damage. Sustainability 12:4732

    CAS  Google Scholar 

  • Elhindi KM, El-Din SA, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24:170–179

    CAS  Google Scholar 

  • Fales HM, Jaouni TM (1973) Simple device for preparing ethereal diazomrthane without restoring to Codisitillation. In Anal Chem 45:2302–2303

    CAS  Google Scholar 

  • Fernández-Fuego D, Keunen E, Cuypers A, Bertrand A, González A (2017) Mycorrhization protects Betula pubescens Ehr. from metal-induced oxidative stress increasing its tolerance to grow in an industrial polluted soil. J Hazard Mater 336:119–127

    Google Scholar 

  • Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. Plant Physiol 165:833–844

    CAS  Google Scholar 

  • Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5:47–58

    CAS  Google Scholar 

  • Garg N, Singla P, Bhandari P (2015) Metal uptake, oxidative metabolism, and mycorrhization in pigeon pea and pea under arsenic and cadmium stress. Turk J Agric For 39:234–250

    CAS  Google Scholar 

  • Glowa W (1974) Zirconium dioxide, a new catalyst in Kjeldahl method for total nitrogen determination. J Assoc Off Anal Chem 57:1228–1231

    CAS  Google Scholar 

  • Guo JK, Zhou R, Ren XH, Jia HL, Hua L, Xu HH, Lv X, Zhao J, Wei T (2018) Effects of salicylic acid, Epi brassinolide and calcium on stress alleviation and Cd accumulation in tomato plants. Ecotoxicol Environ Saf 157:491–496

    CAS  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Egamberdieva D (2016) Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungi. Saudi J Biol Sci 23:39–47

    CAS  Google Scholar 

  • Hayward AR, Coates KE, Galer AL, Hutchinson TC, Emery RJN (2013) Chelator profiling in Deschampsia cespitosa (L.) Beauv. Reveals a Ni reaction, which is distinct from the ABA and cytokinin associated response to Cd. Plant Physiol Biochem 64:84–91

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    CAS  Google Scholar 

  • Hu YF, Zhou G, Na XF, Yang L, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170:965–975

    CAS  Google Scholar 

  • Iram S, Parveen K, Usman J, Nasir K, Akhtar N, Arouj S, Ahmad I (2012) Heavy metal tolerance of filamentous fungal strains isolated from soil irrigated with industrial wastewater. Biologija 58(3):107–116

    CAS  Google Scholar 

  • Iskandar NL, Zainudin NAIM, Tan SG (2011) Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci 23:824–830. 30

    CAS  Google Scholar 

  • Ismail HM, Hussain A, Afzal Khan S, Iqb Al A, Lee IJ (2019) Aspergillus flavus promoted the growth of soybean and sunflower seedlings at elevated temperature. Biomed Res Int 2019:1–13

    Google Scholar 

  • Ismail HM, Hussain A, Khan SA, Iqbal A, Lee IJ (2020) An endophytic fungus Aspergillus violaceofuscus can be used as heat stress adaptive tool for Glycine max L. and Helianthus annuus L. J App Bot Food Quality 93:112–120

    CAS  Google Scholar 

  • Janeeshma E, Puthur JT (2020) Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch Microbiol 202:1–16

    CAS  Google Scholar 

  • Jiang QY, Zhuo F, Long SH, Zhao HD, Yang DJ, Ye ZH, Li SS, Jing YX (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:21805

    CAS  Google Scholar 

  • Khan AL, Lee IJ (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol 13:86

    CAS  Google Scholar 

  • Khan AL, Waqas M, Hussain J, Al-harrasi A, Lee I (2014) Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol Fertil Soils 50:75–85

    CAS  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    CAS  Google Scholar 

  • Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin JH, Lee IJ (2016) Endophytic fungi from frankincense tree Improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11:e0158207

    Google Scholar 

  • Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R (2019) Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 9:5855

    Google Scholar 

  • Lamhamdi M, El Galiou O, Bakrim A, Carlos J, Arias M, Aarab A, Lafont R (2013) Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) Seedlings. Saudi J Biol Sci 20:29–36

    CAS  Google Scholar 

  • Lei M, Liu Y, Zhang B, Zhao Y, Wang X, Zhou Y, Raghothama KG, Liu D (2011) Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant Physiol 156:1116–1130

    CAS  Google Scholar 

  • Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Google Scholar 

  • Li X, Ma H, Li LL, Gao Y, Li YZ, Xu H (2019) Subcellular distribution, chemical forms and physiological responses involved in cadmium tolerance and detoxification in Agrocybe aegerita. Ecotoxicol Environ Saf 171:66–74

    CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Lu N, Hua T, Zhaia Y, Qina H, Aliyevaa J, Zhanga H (2020) Fungal cell with artificial metal container for heavy metals biosorption: equilibrium, kinetics study and mechanisms analysis. Environ Res 182:109061

    CAS  Google Scholar 

  • Lubna AS, Hamayun M, Gul H, Lee IJ, Hussain A (2018) Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. J Plant Interact 13(1):100–111

    CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    CAS  Google Scholar 

  • Marquez-Garcia B, Fernandez-Recamales MA, Cordoba F (2012) Effects of cadmium on phenolic composition and antioxidant activities of Erica andevalensis. Aust J Bot 2012:936950. https://doi.org/10.1155/2012/936950

    Article  CAS  Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35(3):524–533

    CAS  Google Scholar 

  • Massaccesi G, Romero MC, Cazau MC, Bucsinszky AM (2002) Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World J Microbiol Biotechnol 18:817–820

    CAS  Google Scholar 

  • Mendarte-Alquisira C, Gutiérrez-Rojas M, González-Márquez H, Volke- Sepúlveda T. (2017) Improved growth and control of oxidative stress in plants of Festuca arundinacea exposed to hydrocarbons by the endophytic fungus Lewia sp. Plant Soil 411:347–358

    CAS  Google Scholar 

  • Mohamed HI (2011) Molecular and biochemical studies on the effect of gamma rays on lead toxicity in cowpea (Vigna sinensis) plants. Biol Trace Elem Res 144:1205–1218

    CAS  Google Scholar 

  • Mohamed H, Akladious S (2017) Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants. Pestic Biochem Physiol 142:117–122

    CAS  Google Scholar 

  • Mohamed HI, Elsherbiny E, Abdelhamid M (2016) Physiological and biochemical responses of Vicia faba plants to foliar application of zinc and iron. Gesunde Pflanzen 68:201–212

    CAS  Google Scholar 

  • Mohamed HI, Akladious SA, El-Beltagi HS (2018a) Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Fresenius Environ Bull 27(10):s 7054–s 7065

    Google Scholar 

  • Mohamed HI, El-Beltagi HS, Aly A, Latif HH (2018b) The role of systemic and non systemic fungicides on the physiological and biochemical parameters in Gossypium hirsutum plant, implications for defense responses. Fresenius Environ Bull 27:8585–8593

    CAS  Google Scholar 

  • Mohanty AP, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200

    Google Scholar 

  • Moustafa-Farag M, Mohamed HI, Mahmoud A, Elkelish A, Misra AN, Guy KM, Kamran M, Ai S, Zhang M (2020) Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron. Plants 724. https://doi.org/10.3390/plants9060724

  • Nusrat B, Gul J, Farzana GJ, Muhammad H, Amjad I, Anwar H, Hazir R, Abdul T, Faiza K (2019) Cochliobolus sp. acts as a biochemical modulator to alleviate salinity stress in okra plants. Plant Physiol Biochem 139:459–469

    Google Scholar 

  • Okem A, Stirk WA, Street RA, Southway C, Finnie JF, van Staden J (2015) Effects of Cd and Al stress on secondary metabolites, antioxidant and antibacterial activity of Hypoxis hemerocallidea Fisch. & C.A. Mey. Plant Physiol Biochem 97:147–155

    CAS  Google Scholar 

  • Pan F, Su TJ, Cai SM, Wu W (2017) Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds. Sci Rep 7:42008

    CAS  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341

    CAS  Google Scholar 

  • Rasouli-Sadaghiani MH, Barin M, Khodaverdiloo H, Moghaddam SS, Damalas CA, Kazemalilou S (2019) Arbuscular mycorrhizal fungi and rhizobacteria promote growth of Russian knapweed (Acroptilon repens L.) in a Cd-contaminated soil. J. Plant Growth Regul 38:113–121

    CAS  Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353

    CAS  Google Scholar 

  • Salbitani G, Bottone C, Carfagna S (2017) Determination of reduced and total glutathione content in extremophilic microalga Galdieria phlegrea. Bio-protocol 7(13):e2372

    Google Scholar 

  • Sarathambal C, Khankhane PJ, Gharde Y, Kumar B, Varun M, Arun S (2016) The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. Int J Phytoremediat 19(4):360–370

    Google Scholar 

  • Shahab S, Ahmed N, Khan NS (2009) Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr J Agric Res 4:1312–1316

    Google Scholar 

  • Shahabivand S, Parvaneh A, Aliloo AA (2017) Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicol Environ Saf 145:496–502

    CAS  Google Scholar 

  • Shen M, Liu L, Li DW, Zhou WN, Zhou ZP, Zhang CF, Luo YY, Wang HB, Li HY (2013) The effect of endophytic Peyronellaea from heavy metal- contaminated and uncontaminated sites on maize growth, heavy metal absorption and accumulation. Fungal Ecol 6:539–545

    Google Scholar 

  • Shi Y, Xie H, Cao L, Zhang R, Xu Z, Wang Z, Deng Z (2017) Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. Environ Sci Pollut Res 24(1):417–426

    CAS  Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937

    Google Scholar 

  • Singleton V, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–175

    CAS  Google Scholar 

  • Snedecor GW, Chochran WG (1980) Statistical Methods, 7th edn. Iowa State University Press, I.A. Ames

    Google Scholar 

  • Sofy MR, Seleiman MF, Alhammad BA, Alharbi BM, Mohamed HI (2020a) Minimizing adverse effects of Pb on maize plants by combined treatment with Jasmonic, Salicylic Acids and Proline. Agronomy 10:699

    CAS  Google Scholar 

  • Sofy AR, Dawoud RA, Sofy MR, Mohamed HI, Hmed AA, El-Dougdoug NK (2020b) Improving regulation of enzymatic and nonenzymatic antioxidants and stress-related gene stimulation in cucumber mosaic cucumovirus infected cucumber plants treated with glycine betaine, chitosan and combination. Molecules 25:2341. https://doi.org/10.3390/molecules25102341

    Article  CAS  Google Scholar 

  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Alnaggar AM, Soliman A, El-Dougdoug NK (2021a) Ameliorating the adverse effects of tomato mosaic tobamovirus infecting tomato plants in egypt by boosting immunity in tomato plants using zinc oxide nanoparticles. Molecules 26:1337

    CAS  Google Scholar 

  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Refaey E, Mohamed HI, El-Dougdoug NK (2021b) Molecular characterization of the Alfalfa mosaic virus infecting Solanum melongena in Egypt and the control of its deleterious effects with melatonin and salicylic acid. Plants 10:459

    CAS  Google Scholar 

  • Sofy MR, Aboseidah AA, Heneidak SA, Ahmed HR (2021c) ACC deaminase containing endophytic bacteria ameliorate salt stress in Pisum sativum through reduced oxidative damage and induction of antioxidative defense systems. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13585-3

  • Stomach KH, Game W, Anderson TH (2007) Compendium of soil fungi. 2nd Edition IHW- Verla Edging pop. 1-672

  • Sun JY, Shen ZG (2007) Effects of Cd stress on photosynthetic characteristics and nutrient uptake of cabbages with different Cd-tolerance. Chinese App Ecol 18(11):2605–2610

    CAS  Google Scholar 

  • Sun JS, Tsuang YW, Chen IJ, Huang WC, Lu FJ (1998) An ultra weak chemiluminescence study on oxidative stress in rabbits following acute thermal injury. Burns 24:225–231

    CAS  Google Scholar 

  • Tundis R, Menichini F, Bonesi M, Conforti F, Statti G, Menichini F, Loizzo MR (2013) Antioxidant and hypoglycaemic activities and their relationship to phytochemicals in Capsicum annuum cultivars during fruit development, LWT. Food Sci Technol 53(1):370–377

    CAS  Google Scholar 

  • Ulusua Y, Öztürk L, Elmastaş M (2017) Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to cadmium stress. Russ J Plant Physiol 64(6):883–888

    Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Google Scholar 

  • Visioli G, Vamerali T, Mattarozzi M, Dramis L, Sanangelantoni AM (2015) Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens. Front Plant Sci 6:638

    Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    CAS  Google Scholar 

  • Vogel AI (1975) A Textbook of Practical Organic Chemistry. Published by English Language Book society and Longman Group Limited 3rd Ed., pp. 197–596

  • Vyas P, Rahi P, Chauhan A, Gulati A (2007) Phosphate solubilization potential and stress tolerance of Eupenicillium parvum from tea soil. Mycol Res 111:931–938

    CAS  Google Scholar 

  • Wang J, Li T, Liu G, Smith JM, Zhao Z (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028

    CAS  Google Scholar 

  • Wang Y, Yi B, Sun X, Yu L, Wu L, Liu W, Wang D, Li Y, Jia R, Yu H, Li X (2019) Removal and tolerance mechanism of Pb by a filamentous fungus: a case study. Chemosphere 225:200–208

    CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Google Scholar 

  • Wei T, Sun Y, Yashir N, Li X, Guo J, Liu X, Jia H, Ren X, Hua L (2021) Inoculation with rhizobacteria enhanced tolerance of tomato (Solanum lycopersicum L.) plants in response to cadmium stress. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10315-4

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144(3):307–313

    CAS  Google Scholar 

  • Wurst M, Prikryl Z, Vokoun J (1984) High-performance liquid chromatography of plant hormones: II. Determination of plant hormones of the indole type. J Chromatogr A 286:237–245

    CAS  Google Scholar 

  • Yang Y, Han X, Liang Y, Ghosh A, Chen J, Tang M (2015) The Combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One 10:e0145726

    Google Scholar 

  • Zahoor M, Irshad M, Rahman H, Qasim M, Afridi SG, Qadir M, Hussaina A (2017) Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicol Environ Saf 142:139–149

    CAS  Google Scholar 

  • Zelinová V, Alemayehu A, Bocová B, Huttová J, Tamás L (2015) Cadmium-induced reactive oxygen species generation, changes in morphogenic responses and activity of some enzymes in barley root tip are regulated by auxin. Biologia 70:356–364

    Google Scholar 

  • Zhang D, Duine JA, Kawai F (2002) The extremely high Al resistance of Penicillium janthinellum F-13 is not caused by internal or external sequestration of Al. Biometals 15:167–174. 31

  • Zhang XF, Hu ZH, Yan TX, Lu RR, Peng CL, Li SS, Jing YX (2019) Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. Ecotoxicol Environ Saf 171:352–360

    CAS  Google Scholar 

Download references

Availability of data and material

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

AMM and OMM conceived and designed the experiments, AMM and OMM performed the experiments, HIM analyzed the data, AMM OMM and HIM contributed to materials and tools and wrote the manuscript, and HIM reviewed the manuscript.

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Mahdy, O.M., Mohamed, H.I. & Mogazy, A.M. Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd- and Pb-contaminated soil and their physiological effects on Vicia faba L.. Environ Sci Pollut Res 28, 67608–67631 (2021). https://doi.org/10.1007/s11356-021-15382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15382-4

Keywords

Navigation