Skip to main content
Log in

Neutralization of bauxite residue with high calcium content in abating pH rebound by using ferrous sulfate

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The high alkalinity of bauxite residue and its sustained release impose major limitation on its reuse and ecological disposal. It has been confirmed from sustained rehabilitation that gypsum can effectively reduce the alkalinity of bauxite residue by continuously releasing Ca2+ to react with carbonate and hydroxide. However, the combined bauxite residue with high calcium content exhibits stubborn alkalinity for most alkaline reduction methods employing cations to consume carbonate. In this study, we have aimed to address this knowledge gap by investigating the dose–response relationship in the alkaline reduction induced by ferrous sulfate (FS) neutralization. The pH, exchangeable sodium percentage (ESP), and CO32-/HCO3- of bauxite residue decreased from 10.6, 44.1%, and 42.7/24.5 mg/kg to 8.1, 27.7%, and 0.7/18.0 mg/kg, respectively. Approximately 20–55 days were required for the neutralization reaction to reach equilibrium. The FS induced an increase in free iron oxide (Fed) and amorphous iron oxide (Feo), and partial dissolution of alkaline minerals including calcite, cancrinite, and kaolinite in bauxite residue. Further, addition of FS also affected the kinetic dissolution process of bauxite residue; the acid neutralization capacity of bauxite residue to pH 7 decreased from 0.21 mol H+/kg solid to 0.02 mol H+/kg solid. The results showed FS to be a potential candidate for improving the characteristics of the combined bauxite residue, and guide the FS application for the disposal of the combined bauxite residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data related to this publication are made available from the corresponding author on reasonable request.

References

  • Azof FI, Safarian J (2020) Leaching kinetics and mechanism of slag produced from smelting-reduction of bauxite for alumina recovery. Hydrometallurgy 195:105388

    CAS  Google Scholar 

  • Boland DD, Collins RN, Miller CJ, Glover CJ, Waite TD (2014) Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite. Environ Sci Technol 48:5477–5485

    CAS  Google Scholar 

  • Burkle D, De Motte R, Taleb W, Kleppe A, Comyn T, Vargas SM, Neville A, Barker R (2017) In situ SR-XRD study of FeCO3 precipitation kinetics onto carbon steel in CO2-containing environments: The influence of brine pH. Electrochim Acta 255:127–144

    CAS  Google Scholar 

  • Chen CR, Phillips IR, Wei LL, Xu ZH (2010) Behaviour and dynamics of di-ammonium phosphate in bauxite processing residue sand in Western Australia--II. Phosphorus fractions and availability. Environ Sci Pollut Res 17:1110–1118

    CAS  Google Scholar 

  • Chen SC, Zhu Q, Su YY, Xing ZP (2018) Preparation and performance of Fe(II)-akaganeite (β-FeOOH) modified red mud granule filter material. Res Chem Intermediat 44:7583–7593

    CAS  Google Scholar 

  • Chen XY, Zeng YY, Chen ZH, Wang S, Xin CZ, Wang LX, Shi CL, Lu L, Zhang CX (2020) Synthesis and electrochemical property of FeOOH/Graphene oxide composites. Front Chem 8:328

    CAS  Google Scholar 

  • Cusack PB, Courtney R, Healy MG, O’ Donoghue LMT, Ujaczki É (2019) An evaluation of the general composition and critical raw material content of bauxite residue in a storage area over a twelve-year period. J Clean Prod 208:393–401

    CAS  Google Scholar 

  • Di Carlo E, Boullemant A, Courtney R (2019a) A field assessment of bauxite residue rehabilitation strategies. Sci Total Environ 663:915–926

    Google Scholar 

  • Di Carlo E, Chen CR, Haynes RJ, Phillips IR, Courtney R (2019b) Soil quality and vegetation performance indicators for sustainable rehabilitation of bauxite residue disposal areas: a review. Soil Res 57:419

    Google Scholar 

  • Di Carlo E, Boullemant A, Courtney R (2020) Ecotoxicological risk assessment of revegetated bauxite residue: implications for future rehabilitation programmes. Sci Total Environ 698:134344

    Google Scholar 

  • Fourrier C, Luglia M, Hennebert P, Foulon J, Ambrosi JP, Angeletti B, Keller C, Criquet S (2020) Effects of increasing concentrations of unamended and gypsum modified bauxite residues on soil microbial community functions and structure - a mesocosm study. Ecotoxicol. Environ. Saf. 201:110847

    CAS  Google Scholar 

  • Gräfe M, Klauber C (2011) Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation. Hydrometallurgy 108:46–59

    Google Scholar 

  • Gräfe M, Power G, Klauber C (2011) Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy 108:60–79

    Google Scholar 

  • Han YS, Ji SW, Lee PK, Oh C (2017) Bauxite residue neutralization with simultaneous mineral carbonation using atmospheric CO2. J Hazard Mater 326:87–93

    CAS  Google Scholar 

  • Higgins D, Curtin T, Burke I, Courtney R (2016) The potential for constructed wetlands to treat alkaline bauxite-residue leachate: Phragmites australis growth. Environ Sci Pollut Res 23:24305–24315

    CAS  Google Scholar 

  • Higgins D, Curtin T, Burke I, Courtney R (2018) The potential for constructed wetland mechanisms to treat alkaline bauxite residue leachate: carbonation and precipitate characterisation. Environ Sci Pollu Res 25:29451–29458

    CAS  Google Scholar 

  • Hove M, van Hille RP, Lewis AE (2008) Mechanisms of formation of iron precipitates from ferrous solutions at high and low pH. Chem. Eng. Sci. 63:1626–1635

    CAS  Google Scholar 

  • Hu Y, Liang S, Yang JK, Chen Y, Ye N, Ke Y, Tao SY, Xiao KK, Hu JP, Hou HJ, Fan W, Zhu SY, Zhang YS, Xiao B (2019) Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud. Constr Build Mater 200:398–407

    CAS  Google Scholar 

  • Hua Y, Heal KV, Friesl-Hanl WF (2017) The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review. J Hazard Mater 325:17–30

    CAS  Google Scholar 

  • Huang PH, Deng SG, Zhang ZY, Wang XL, Chen XD, Yang XS, Yang L (2015) A sustainable process to utilize ferrous sulfate waste from titanium oxide industry by reductive decomposition reaction with pyrite. Thermochimica Acta 620:18–27

    CAS  Google Scholar 

  • Ishikawa T, Takeuchi K, Kandori K, Nakayama T (2005) Transformation of γ-FeOOH to α-FeOOH in acidic solutions containing metal ions. Colloids and Surfaces A: Physicochem. Eng. Aspects. 266:155–159

    CAS  Google Scholar 

  • Jiang J, Xu RK, Zhao AZ (2011) Surface chemical properties and pedogenesis of tropical soils derived from basalts with different ages in Hainan, China. Catena 87:334–340

    CAS  Google Scholar 

  • Ke WS, Zhang XC, Zhu F, Wu H, Zhang YF, Shi Y, Hartley W, Xue SG (2021) Appropriate human intervention stimulates the development of microbial communities and soil formation at a long-term weathered bauxite residue disposal area. J Hazard Mater 405:124689

    CAS  Google Scholar 

  • Khaitan S, Dzombak DA, Lowry GV (2009) Chemistry of the acid neutralization capacity of bauxite residue. Environ Eng Sci 26:873–884

    CAS  Google Scholar 

  • Kong XF, Li M, Xue SG, Hartley W, Chen CR, Wu C, Li XF, Li YW (2017) Acid transformation of bauxite residue: Conversion of its alkaline characteristics. J Hazard Mater 324:382–390

    CAS  Google Scholar 

  • Li XY, Lei ZW, Qu J, Li Z, Zhou XW, Zhang QW (2017) Synthesizing slow-release fertilizers via mechanochemical processing for potentially recycling the waste ferrous sulfate from titanium dioxide production. J. Environ. Manage. 186:120–126

    CAS  Google Scholar 

  • Li XF, Ye YZ, Xue SG, Jiang J, Wu C, Kong XF, Hartley W, Li YW (2018) Leaching optimization and dissolution behavior of alkaline anions in bauxite residue. Trans. Nonferrous Met. Soc. China 28:1248–1255

    CAS  Google Scholar 

  • Li YY, Haynes RJ, Chandrawana I, Zhou YF (2019) Growth of Rhodes grass and leaching of ions from seawater neutralized bauxite residues after amendment with gypsum and organic wastes. J Environ Manage 231:596–604

    CAS  Google Scholar 

  • Liu H, Wei Y, Sun YH, Wei W (2005) Dependence of the mechanism of phase transformation of Fe(III) hydroxide on pH. Colloids and Surfaces A: Physicochem. Eng. Aspects. 252:201–205

    CAS  Google Scholar 

  • Liu WC, Chen XQ, Li WX, Yu YF, Yan K (2014) Environmental assessment, management and utilization of red mud in China. J. Clean. Prod. 84:606–610

    CAS  Google Scholar 

  • Luo JQ, Wang LL, Li QS, Zhang QK, He BY, Wang Y, Qin LP, Li SS (2015) Improvement of hard saline–sodic soils using polymeric aluminum ferric sulfate (PAFS). Soil Tillage Res 149:12–20

    Google Scholar 

  • Lyu F, Hu YH, Wang L, Sun W (2021) Dealkalization processes of bauxite residue: a comprehensive review. J Hazard Mater 403:123671

    Google Scholar 

  • Mahdy AM (2011) Comparative Effects of different soil amendments on amelioration of saline-sodic soils. Soil & Water Res 6:205–216

    CAS  Google Scholar 

  • McIntyre NS, Zetaruk DG (2002)X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521–1529

    Google Scholar 

  • Menzies NW, Kopittke PM (2020) Seawater neutralization and gypsum amelioration of bauxite refining residue to produce a plant growth medium. Sci Total Environ 763:143046

    Google Scholar 

  • O’Connor G, Courtney R (2020) Constructed wetlands for the treatment of bauxite residue leachate: long term field evidence and implications for management. Ecol Eng 158:106076

    Google Scholar 

  • Phillips IR, Chen C (2010) Surface charge characteristics and sorption properties of bauxite-processing residue sand. Aust J Soil Res 48:77–87

    Google Scholar 

  • Ren J, Liu JD, Chen J, Liu XL, Li FS, Du P (2017) Effect of ferrous sulfate and nitrohumic acid neutralization on the leaching of metals from a combined bauxite residue. Environ Sci Pollut Res 24:9325–9336

    CAS  Google Scholar 

  • Ren J, Chen J, Han L, Wang M, Yang B, Du P, Li FS (2018) Spatial distribution of heavy metals, salinity and alkalinity in soils around bauxite residue disposal area. Sci Total Environ 628–629:1200–1208

    Google Scholar 

  • Ren J, Chen J, Guo W, Yang B, Qin XP, Du P (2019) Physical, chemical, and surface charge properties of bauxite residue derived from a combined process. J Cent South Univ 26:373–382

    CAS  Google Scholar 

  • Rezaei Rashti M, Esfandbod M, Phillips IR, Chen CR (2019) Aged biochar alters nitrogen pathways in bauxite-processing residue sand: environmental impact and biogeochemical mechanisms. Environ Pollu 247:438–446

    CAS  Google Scholar 

  • Rubinos DA, Spagnoli G (2019) Assessment of red mud as sorptive landfill liner for the retention of arsenic (V). J Environ Manage 232:271–285

    CAS  Google Scholar 

  • Santini TC, Peng YG (2017) Microbial fermentation of organic carbon substrates drives rapid pH neutralization and element removal in bauxite residue leachate. Environ Sci Technol 51:12592–12601

    CAS  Google Scholar 

  • Santini TC, Kerr JL, Warren LA (2015)Microbially-driven strategies for bioremediation of bauxite residue. J Hazard Mater 293:131–157

    CAS  Google Scholar 

  • Santini TC, Malcolm LI, Tyson GW, Warren LA (2016) pH and organic carbon dose rates control microbially driven bioremediation efficacy in alkaline bauxite residue. Environ Sci Technol 50:11164–11173

    CAS  Google Scholar 

  • Snars K, Gilkes RJ (2009) Evaluation of bauxite residues (red muds) of different origins for environmental applications. Appl Clay Sci 46:13–20

    CAS  Google Scholar 

  • Tian T, Ke WS, Zhu F, Wang QL, Ye YZ, Guo Y, Xue SG (2019) Effect of substrate amendment on alkaline minerals and aggregate stability in bauxite residue. J Cent South Univ 26:393–403

    CAS  Google Scholar 

  • Tian T, Cl Z, Zhu F, Yuan SX, Guo Y, Xue SG (2021) Effect of phosphogypsum on saline-alkalinity and aggregate stability of bauxite residue. Trans. Nonferrous Met. Soc. China 31:1484–1495

    CAS  Google Scholar 

  • Vempati RK, Loeppert RH (1988) Chemistry and mineralogy of Fe-containing oxides and layer silicates in relation to plant available iron. J Plant Nutr 11:1557–1574

    CAS  Google Scholar 

  • Wang L, Sun N, Tang HH, Sun W (2019) A Review on comprehensive utilization of red mud and prospect analysis. Minerals 9:396

    Google Scholar 

  • Xing BB, Graham N, Yu WZ (2020) Transformation of siderite to goethite by humic acid in the natural environment. Commun Chem 3:38

    CAS  Google Scholar 

  • Xue SG, Zhu F, Kong XF, Wu C, Huang L, Huang N, Hartley W (2016a) A review of the characterization and revegetation of bauxite residues (Red mud). Environ Sci Pollut Res 23:1120–1132

    CAS  Google Scholar 

  • Xue SG, Kong XF, Zhu F, Hartley W, Li XF, Li YW (2016b) Proposal for management and alkalinity transformation of bauxite residue in China. Environ Sci Pollut Res 23:12822–12834

    CAS  Google Scholar 

  • Xue SG, Huang N, Fan JR, Liu Z, Ye Y, He YZ, Hartley W, Zhu F (2020) Evaluation of aggregate formation, stability and pore characteristics of bauxite residue following polymer materials addition. Sci Total Environ 765:142750

    Google Scholar 

  • Zhu F, Hou JT, Xue SG, Wu C, Wang QL, Hartley W (2017) Vermicompost and gypsum amendments improve aggregate formation in bauxite residue. Land Degrad Dev 28:2109–2120

    Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (Grant No. 41907360 and No. 41501350).

Author information

Authors and Affiliations

Authors

Contributions

Xueqian Ren wrote the original draft, and Jie Ren conceptualized and designed the study. Xi Zhang and Pinpeng Tuo performed the experiment and data analysis. Bin Yang, Juan Chen, Wei Guo commented on and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jie Ren.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Ioannis A. Katsoyiannis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, ., Zhang, X., Tuo, P. et al. Neutralization of bauxite residue with high calcium content in abating pH rebound by using ferrous sulfate. Environ Sci Pollut Res 29, 13167–13176 (2022). https://doi.org/10.1007/s11356-021-16622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16622-3

Keywords

Navigation