Skip to main content
Log in

Bias in normalization: Causes, consequences, detection and remedies

  • LCA Methodology
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Introduction

Normalization is an optional step in LCIA that is used to better understand the relative importance and magnitude of the impact category indicator results. It is used for error checking, as a first step in weighting, and for standalone presentation of results. A normalized score for a certain impact category is obtained by determining the ratio of the category indicator result of the product and that of a reference system, such as the world in a certain year or the population of a specific area in a certain year.

Biased Normalization

In determining these two quantities, the numerator, the denominator, or both can suffer from incompleteness due to a lack of emission data and/or characterisation factors. This leads to what we call a biased normalization. As a consequence. the normalized category indicator result can be too low or too high. Some examples from hypothetical and real case studies demonstrate this.

Consequences of Biased Normalization

Especially when for some impact categories the normalized category indicator result is right, for others too low, and for others too high, severe problems in using normalized scores can show up. It is shown how this may affect the three types of usage of normalized results: error checking, weighting and standalone presentation.

Detection and Remedies of Biased Normalization

Some easy checks are proposed that at least alert the LCA practitioner of the possibility of a biased result. These checks are illustrated for an example system on hydrogen production. A number of remedies of this problem is possible. These are discussed. In particular, casedependent normalization is shown to solve some problems, but on the expense of creating other problems.

Discussion

It appears that there is only one good solution: databases and tables of characterisation factors must be made more completely, so that the risk of detrimental bias is reduced. On the other hand, the use of the previously introduced checks should become a standard element in LCA practice, and should be facilitated with LCA software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous (2000): Environmental management — life cycle assessment — life cycle impact assessment (ISO 14042). ISO, Geneva, Switzerland

  • Breedveld L, Lafleur M, Blonk H (1999): A Framework for Actualising Normalisation Data in LCA: Experiences in the Netherlands. Int J LCA 4(4) 213–220

    Article  CAS  Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Hirschier R, Hellweg S, Humbert S, Margni M, Nemecek T, Spielmann M (2004): Implementation of life cycle impact assessment methods. Ecoinvent report No. 3. Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland

    Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, Oers L van, Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de, Duin R van, Huijbregts MAJ (2002): Handbook on life cycle assessment. Operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Hauschild M, Wenzel H (1998): Environmental assessment of products. Volume 2: Scientific background. Chapman & Hall, London, United Kingdom

    Google Scholar 

  • Heijungs R (1997): Normalization of impact scores in LCA: what, why and how? In: ‘Ökobilanzen — Trends und Perspektiven’. Workshop der GDCh-Fachgruppe Umweltchemie und Ökotoxikologie; Gesellschaft Deutscher Chemiker, Frankfurt am Main, Germany

    Google Scholar 

  • Heijungs R, Kleijn R (2001): Numerical approaches to life-cycle interpretation. Five examples. Int J LCA 6(3) 141–148

    CAS  Google Scholar 

  • Heijungs R, Suh S (2002): The computational structure of life cycle assessment. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Huijbregts MAJ (2000): Priority assessment of toxic substances in the frame of LCA. Calculation of toxicity potentials for ethylene oxide and hydrogen fluoride. University of Amsterdam, Amsterdam, The Netherlands

    Google Scholar 

  • Huijbregts MAJ, Norris GA, Bretz R, Ciroth A, Maurice B, Bahr B von, Weidema BP, Beaufort ASH de (2001): Framework for Modelling Data Uncertainty in Life Cycle Inventories. Int J LCA 6(3) 127–132

    Google Scholar 

  • Norris GA (2001): The Requirement for Congruence in Normalization. Int J LCA 6(2) 85–88

    CAS  Google Scholar 

  • Rovers V (2005): Life cycle assessments of different production routes for hydrogen. Student report, Leiden University, Leiden, The Netherlands

    Google Scholar 

  • Seppälä J, Basson L, Norris GA (2001): Decision Analysis Frameworks for Life-Cycle Impact Assessment. J Industr Ecol 5(4) 45–68

    Article  Google Scholar 

  • Suh S, Lenzen M, Treloar GJ, Hondo H, Horvath A, Huppes G, Jolliet O, Klann U, Krewitt W, Moriguchi Y, Munksagaard J, Norris G (2004): System boundary selection in life-cycle inventories using hybrid approaches. Environ Sci Technol 38(3) 657–664

    Article  CAS  Google Scholar 

  • Tolle DA (1997): Regional Scaling and Normalization in LCIA. Development and Application of Methods. Int J LCA 2(4) 197–208

    Google Scholar 

  • Udo de Haes Ha, Finnveden G, Goedkoop M, Hauschild M, Hertwich EG, Hofstetter P, Jolliet O, Klöpffer W, Krewitt W, Lindeijer E, Müller-Wenk R, Olsen SI, Pennington DW, Potting J, Steen B (2002): Life-cycle impact assessment: Striving towards best practice. SETAC Press, Pensacola, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinout Heijungs.

Additional information

ESS-Submission Editor: Duane A. Tolle (tolled@battelle.org)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heijungs, R., Guinée, J., Kleijn, R. et al. Bias in normalization: Causes, consequences, detection and remedies. Int J Life Cycle Assess 12, 211–216 (2007). https://doi.org/10.1065/lca2006.07.260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1065/lca2006.07.260

Keywords

Navigation