Skip to main content

Advertisement

Log in

Soil macropore networks derived from X-ray computed tomography in response to typical thaw slumps in Qinghai-Tibetan Plateau, China

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Thaw slumps are widely distributed in the Qinghai-Tibet Plateau (QTP) due to global warming and engineering constructions. However, an understanding of the effect of thaw slumps on the 3-D soil macropore networks is lacking. In this study, we aimed to quantify the responses of soil macropore structure to thaw slumps in QTP.

Materials and methods

Three stages were selected according to the intensities of thaw slumping, including the original grassland, collapsing areas, and collapsed areas. Nine undisturbed soil cores (0–30-cm deep) were collected in total with 3 replicates sampled at each stage, and they were scanned by X-ray computed tomography (CT).

Results and discussion

The results showed that collapsing areas had higher macroporosity, branch density, and node density than the original grassland and collapsed areas. The macropore networks in the collapsing areas had the highest connectivity among the three thaw slump stages. Macropores with volume > 10 mm3 accounted for more than 50% of the total macropore volume in the original grassland, collapsing areas, and collapsed areas. We speculate that compared with the other two stages, the soil macropore structure in the collapsing areas is more conducive to water infiltration and lateral migration. The connectivity of macropore networks in the collapsed areas was the lowest among the three stages, which may result in water infiltration difficulties after thaw slumps.

Conclusions

Thaw slumps affected the soil macropore structure remarkably. The effects of thaw slumps on soil macropore network characteristics were more significantly than on the macropore size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott BW, Jones JB (2015) Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob Change Biol 21(12):4570–4587

    Article  Google Scholar 

  • Bastardie F, Capowiez Y, De Dreuzy JR, Cluzeau D (2003) X-ray tomographic and hydraulic characterization of burrowing by three earthworm species in repacked soil cores. Appl Soil Ecol 24(1):3–16

    Article  Google Scholar 

  • Brewer RE (1976) Fabric and mineral analysis of soils. Krieger Publishing Company, Huntington, NY

    Google Scholar 

  • Cheng G, Jin H (2013) Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol J 21(1):5–23

    Article  Google Scholar 

  • Fan B, Liu X, Zhu Q, Qin G, Li J, Lin H, Guo L (2020) Exploring the interplay between infiltration dynamics and Critical Zone structures with multiscale geophysical imaging: A review. Geoderma 374:114431

    Article  Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical Cone-Beam Algorithm. JOSA A 1(6):612–619

    Article  Google Scholar 

  • Fraser RH, Kokelj SV, Lantz TC, McFarlane-Winchester M, Olthof I, Lacelle D (2018) Climate sensitivity of High Arctic permafrost terrain demonstrated by widespread ice-wedge thermokarst on Banks Island. Remote Sens 10(6):954

    Article  Google Scholar 

  • Gerke HH (2006) Preferential flow descriptions for structured soils. J Plant Nutr Soil Sc 169(3):382–400

    Article  CAS  Google Scholar 

  • Gerke KM, Sidle RC, Mallants D (2015) Preferential flow mechanisms identified from staining experiments in forested hillslopes. Hydrol Process 29(21):4562–4578

    Article  Google Scholar 

  • Hu X, Li ZC, Li XY, Liu Y (2015) Influence of shrub encroachment on CT-measured soil macropore characteristics in the Inner Mongolia grassland of northern China. Soil Tillage Res 150:1–9

    Article  Google Scholar 

  • Hu X, Li XY, Wang P, Liu Y, Wu XC, Li ZC, Zhao YD, Cheng YQ, Guo LL, Lyu YL (2019) Influence of exclosure on CT-measured soil macropores and root architecture in a shrub-encroached grassland in northern China. Soil Tillage Res 187:21–30

    Article  Google Scholar 

  • Hu X, Li XY, Li ZC, Gao Z, Wu XC, Wang P, Lyu YL, Liu LY (2020) Linking 3-D soil macropores and root architecture to near saturated hydraulic conductivity of typical meadow soil types in the Qinghai Lake Watershed, northeastern Qinghai-Tibet Plateau. CATENA 185:104287

    Article  Google Scholar 

  • IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015: international soil classification system for naming soils and creating legends for soil maps World Soil Resources Reports No. 106. FAO, Rome

  • Kanevskiy M, Shur Y, Jorgenson T, Brown DRN, Moskalenko N, Brown J, Walker DA, Raynolds MK, Buchhorn M (2017) Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska. Geomorphology 297:20–42

    Article  Google Scholar 

  • Kang S, Xu Y, You Q, Flügel WA, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1):015101

    Article  Google Scholar 

  • Karlsson JM, Lyon SW, Destouni G (2012) Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J Hydrol 464:459–466

    Article  Google Scholar 

  • Karsanina MV, Gerke KM, Skvortsova EB, Ivanov AL, Mallants D (2018) Enhancing image resolution of soils by stochastic multiscale image fusion. Geoderma 314:138–145

    Article  Google Scholar 

  • Karsanina MV, Gerke KM, Skvortsova EB, Mallants D (2015) Universal spatial correlation functions for describing and reconstructing soil microstructure. PLoS One 10(5):e0126515

    Article  Google Scholar 

  • Karsanina MV, Lavrukhin EV, Fomin DS, Yudina AV, Abrosimov KN, Gerke KM (2021) Compressing soil structural information into parameterized correlation functions. Eur J Soil Sci 72(2):561–577

    Article  CAS  Google Scholar 

  • Katamura F, Fukuda M, Bosikov NP, Desyatkin RV, Nakamura T, Moriizumi J (2006) Thermokarst formation and vegetation dynamics inferred from a palynological study in central Yakutia, Eastern Siberia. Russia Arct Antarct Alp Res 38(4):561–570

    Article  Google Scholar 

  • Katuwal S, Norgaard T, Moldrup P, Lamandé M, Wildenschild D, De Jonge LW (2015) Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography. Geoderma 237:9–20

    Article  Google Scholar 

  • Kokelj SV, Jorgenson MT (2013) Advances in Thermokarst Research. Permafr Periglac Process 24(2):108–119

    Article  Google Scholar 

  • Kokelj SV, Lantz TC, Kanigan JC, Smith SL, Coutts R (2009) Origin and polycyclic behaviour of tundra thaw slumps, Mackenzie Delta region, Northwest Territories, Canada. Permafr Periglac Process 20(2):173–184

    Article  Google Scholar 

  • Kokelj SV, Lantz TC, Tunnicliffe J, Segal R, Lacelle D (2017) Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45(4):371–374

    Article  Google Scholar 

  • Lamandé M, Wildenschild D, Berisso FE, Garbout A, Moldrup P, Keller T, Hansen SB, De Jonge LW, Schjønning P (2013) X-ray CT and laboratory measurements on glacial till subsoil cores: assessment of inherent and compaction-affected soil structure characteristics. Soil Sci 178(7):359–368

    Article  Google Scholar 

  • Larsbo M, Koestel J, Jarvis N (2014) Relations between macropore network characteristics and the degree of preferential solute transport. Hydrol Earth Syst Sci 18(12):5255–5269

    Article  Google Scholar 

  • Lewkowicz AG, Way RG (2019) Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nat Commun 10:1329

    Article  Google Scholar 

  • Liljedahl AK, Boike J, Daanen RP, Fedorov AN, Frost GV, Grosse G, Hinzman LD, Iijma Y, Jorgenson JC, Matveyeva N, Necsoiu M, Raynolds MK, Romanovsky VE, Schulla J, Tape KD, Walker DA, Wilson CJ, Yabuki H, Zona D (2016) Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat Geosci 9(4):312–318

    Article  CAS  Google Scholar 

  • Li X, Lu Y, Zhang X, Fan W, Lu Y, Pan W (2019a) Quantification of macropores of Malan loess and the hydraulic significance on slope stability by X-ray computed tomography. Environ Earth Sci 78(16):522

    Article  Google Scholar 

  • Li ZC, Hu X, Li XY, Huang YM, Wu XC, Wang P, Liu LY (2019b) Quantification of soil macropores at different slope positions under alpine meadow using computed tomography in the Qinghai Lake watershed, NE Qinghai-Tibet. Eur J Soil Sci 52(11):1391–1401

    Article  Google Scholar 

  • Lin HS, Bouma J, Wilding LP, Richardson JL, Kutilek M, Nielsen DR (2005) Advances in hydropedology. Adv Agron 1–89

  • Luo L, Lin H, Halleck P (2008) Quantifying soil structure and preferential flow in intact soil using X-ray computed tomography. Soil Sci Soc Am J 72(4):1058–1069

    Article  CAS  Google Scholar 

  • Luo L, Lin H, Li S (2010) Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography. J Hydrol 393(1–2):53–64

    Article  Google Scholar 

  • Malone L, Lacelle D, Kokelj SV, Clark ID (2013) Impacts of hillslope thaw slumps on the geochemistry of permafrost catchments (Stony Creek watershed, NWT, Canada). Chem Geol 356:38–49

    Article  CAS  Google Scholar 

  • Martínez FSJ, Martín MA, Caniego FJ, Tuller M, Guber A, Pachepsky Y, García-Gutiérrez C (2010) Multifractal analysis of discretized X-ray CT images for the characterization of soil macropore structures. Geoderma 156(1–2):32–42

    Article  Google Scholar 

  • Mu C, Zhang F, Mu M, Chen X, Li Z, Zhang T (2020) Organic carbon stabilized by iron during slump deformation on the Qinghai-Tibetan Plateau. Catena 187:104282

    Article  CAS  Google Scholar 

  • Mu C, Zhang T, Zhang X, Li L, Guo H, Zhao Q, Cao L, Wu Q, Cheng G (2016) Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. J Geophys Res-Biogeosci 121(7):1781–1791

    Article  CAS  Google Scholar 

  • Naveed M, Moldrup P, Arthur E, Wildenschild D, Eden M, Lamandé M, Vogel H, De Jonge LW (2013) Revealing soil structure and functional macroporosity along a clay gradient using X-ray computed tomography. Soil Sci Soc Am J 77(2):403–411

    Article  CAS  Google Scholar 

  • Naveed M, Moldrup P, Schaap MG, Tuller M, Kulkarni R, Vogel HJ, Wollesen de Jonge L (2015) Macropore flow at the field scale: predictive performance of empirical models and X-ray CT analyzed macropore characteristics. Hydrol Earth Syst Sci 12(11):12089–12120

    Google Scholar 

  • Niu F, Lin Z, Lu J, Luo J, Wang H (2015) Assessment of terrain susceptibility to thermokarst lake development along the Qinghai-Tibet engineering corridor. China Environ Earth Sci 73(9):5631–5642

    Article  Google Scholar 

  • Pierret A, Capowiez Y, Belzunces L, Moran CJ (2002) 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma 106(3–4):247–271

    Article  Google Scholar 

  • Pires LF, Borges JA, Rosa JA, Cooper M, Heck RJ, Passoni S, Roque WL (2017) Soil structure changes induced by tillage systems. Soil Tillage Res 165:66–79

    Article  Google Scholar 

  • Pires LF, Borges JA, Bacchi OO, Reichardt K (2010) Twenty-five years of computed tomography in soil physics: a literature review of the Brazilian contribution. Soil till Res 110(2):197–210

    Article  Google Scholar 

  • Qin Y, Wu T, Li R, Yu WJ, Wang TY, Zhu XF, Wang WH, Hu GJ, Tian LM (2016) Using ERA-Interim reanalysis dataset to assess the changes of ground surface freezing and thawing condition on the Qinghai-Tibet Plateau. Environ Earth Sci 75(9):826

    Article  Google Scholar 

  • Schuur EA, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179

    Article  CAS  Google Scholar 

  • Sidle RC, Noguchi S, Tsuboyama Y, Laursen K (2001) A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization. Hydrol Process 15(10):1675–1692

    Article  Google Scholar 

  • Sidle RC, Tsuboyama Y, Noguchi S, Hosoda I, Fujieda M, Shimizu T (2000) Stormflow generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrol Process 14(3):369–385

    Article  Google Scholar 

  • Soto-Gómez D, Perez-Rodriguez P, Juiz LV, Paradelo M, Lopez-Periago JE (2020) 3D multifractal characterization of computed tomography images of soils under different tillage management: linking multifractal parameters to physical properties. Geoderma 363:114129

    Article  Google Scholar 

  • Starkloff T, Larsbo M, Stolte J, Hessel R, Ritsema CJ (2017) Quantifying the impact of a succession of freezing-thawing cycles on the pore network of a silty clay loam and a loamy sand topsoil using X-ray tomography. Catena 156:365–374

    Article  Google Scholar 

  • Taina IA, Heck RJ, Elliot TR (2008) Application of X-ray computed tomography to soil science: a literature review. Can J Soil Sci 88(1):1–19

    Article  Google Scholar 

  • Tao Z, Shen C, Gao Q, Sun Y, Yi W, Li Y (2006) Soil organic carbon storage and vertical distribution of alpine meadow on the Tibetan Plateau. Acta Geogr Sin 61(7):720–728

    Google Scholar 

  • Tsuboyama Y, Sidle RC, Noguchi S, Hosoda I (1994) Flow and solute transport through the soil matrix and macropores of a hillslope segment. Water Resour Res 30(4):879–890

    Article  CAS  Google Scholar 

  • Turetsky MR, Abbott BW, Jones MC, Anthony KW, Olefeldt D, Schuur EAG, Koven C, McGuire AD, Grosse G, Kuhry P, Hugelius G, Lawrence DM, Gibson C, Sannel ABK (2019) Permafrost collapse is accelerating carbon release. Nature 569(7754):32–34

    Article  CAS  Google Scholar 

  • Vogel HJ, Weller U, Schlüter S (2010) Quantification of soil structure based on Minkowski functions. Comput Geosic-UK 36(10):1236–1245

    Article  Google Scholar 

  • Wang M, Xu S, Kong C, Zhao Y, Shi X, Guo N (2019) Assessing the effects of land use change from rice to vegetable on soil structural quality using X-ray CT. Soil Tillage Res 195:104343

    Article  Google Scholar 

  • Wang Y, Sun Z, Sun Y (2018) Effects of a thaw slump on active layer in permafrost regions with the comparison of effects of thermokarst lakes on the Qinghai-Tibet Plateau, China. Geoderma 314:47–57

    Article  Google Scholar 

  • Wu X, Zhao L, Liu G, Xu H, Zhang X, Ding Y (2018) Effects of permafrost thaw-subsidence on soil bacterial communities in the southern Qinghai-Tibetan Plateau. Appl Soil Ecol 128:81–88

    Article  Google Scholar 

  • Xu H, Liu G, Wu X, Smoakc JM, Mu CC, Ma XL, Zhang XL, Li HQ, Hu GL (2018) Soil enzyme response to permafrost collapse in the Northern Qinghai-Tibetan Platea. Ecol Indic 85:585–593

    Article  CAS  Google Scholar 

  • Yang JP, Yang SQ, Li M, Tan CP (2013) Vulnerability of frozen ground to climate change in China. J Glaciol Geocryol 35(6):1436–1445

    Google Scholar 

  • Yi J, Yang Y, Liu M, Hu W, Lou S, Zhang H, Zhang D (2019) Characterising macropores and preferential flow of mountainous forest soils with contrasting human disturbances. Soil Res 57(6):601–614

    Article  CAS  Google Scholar 

  • Zhang TJ, Zhou YW, Gu DX, Qiu GQ, Cheng GD, Li SD (2001.) Geocryology in China. Chinese Academy of Sciences, Beijing (in Chinese)

  • Zhang ZQ, Wu QB (2012) Thermal hazards prediction on Qinghai-Tibet Plateau permafrost region. J Jilin Univ (earth Sci Ed) 42:454–484

    Google Scholar 

  • Zhao L, Wu Q, Marchenko SS, Sharkhuu N (2010) Thermal state of permafrost and active layer in Central Asia during the International Polar Year. Permafr Periglac Process 21(2):198–207

    Article  Google Scholar 

  • Zhao L (2017) A new map of permafrost distribution on the Tibetan Plateau. National Tibetan Plateau Data Center, 2019. https://doi.org/10.11888/Geocry.tpdc.270468.CSTR:18046.11.Geocry.tpdc.270468

  • Zou D, Zhao L, Sheng Y, Chen J, Hu G, Wu T, Wu J, Xie C, Wu X, Pang Q, Wang W, Du E, Li W, Liu G, Li J, Qin Y, Qiao Y, Wang Z, Shi J, Cheng G (2016) A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11(6):2527–2542

    Article  Google Scholar 

Download references

Funding

This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP), China (Grant No. 2019QZKK0306), and the National Science Foundation of China, China (Grant numbers 41971053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Hu.

Additional information

Responsible editor: Jun Zhou

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, ZG., Hu, X., Li, XY. et al. Soil macropore networks derived from X-ray computed tomography in response to typical thaw slumps in Qinghai-Tibetan Plateau, China. J Soils Sediments 21, 2845–2854 (2021). https://doi.org/10.1007/s11368-021-02983-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-021-02983-2

Keywords

Navigation