Skip to main content
Log in

Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper we continue our effort in Liu-Shu (2004) and Liu-Shu (2007) for developing local discontinuous Galerkin (LDG) finite element methods to discretize moment models in semiconductor device simulations. We consider drift-diffusion (DD) and high-field (HF) models of one-dimensional devices, which involve not only first derivative convection terms but also second derivative diffusion terms, as well as a coupled Poisson potential equation. Error estimates are obtained for both models with smooth solutions. The main technical difficulties in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method, the nonlinearity, and the coupling of the models. A simulation is also performed to validate the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayuso B, Carrillo J A, Shu C W. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Preprint. http://www.dam.brown.edu/scicomp/reports/2009-41/

  2. Castillo P. An optimal error estimate for the Local Discontinuous Galerkin method, in discontinuous Galerkin methods: Theory, computation and application. In: Cockburn B, Karniadakis G, Shu C W, eds. Lecture Notes in Computational Science and Egnineering, vol. 11. Berlin: Springer, 2000, 285–290

    Google Scholar 

  3. Castillo P, Cockburn B, Perugia I, et al. An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J Numer Anal, 2000, 38: 676–706

    Article  MathSciNet  Google Scholar 

  4. Castillo P, Cockburn B, Schötzau D, et al. Optimal a priori error estimates for the hp-version of the LDG method for convection diffusion problems. Math Comp, 2002, 71: 455–478

    Article  MATH  MathSciNet  Google Scholar 

  5. Cercignani C, Gamba I M, Jerome J W, et al. Device benchmark comparisons via kinetic, hydrodynamic, and high-field models. Comput Methods Appl Mech Engrg, 2000, 181: 381–392

    Article  MATH  MathSciNet  Google Scholar 

  6. Ciarlet P. The Finite Element Method for Elliptic Problem. Amsterdam: North Holland, 1975

    Google Scholar 

  7. Cockburn B, Dong B, Guzman J. Optimal convergence of the original discontinuous Galerkin method for the transport-reaction equation on special meshes. SIAM J Numer Anal, 2008, 48: 1250–1265

    Article  MathSciNet  Google Scholar 

  8. Cockburn B, Hou S, Shu C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math Comp, 1990, 54: 545–581

    MATH  MathSciNet  Google Scholar 

  9. Cockburn B, Lin S Y, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems. J Comput Phys, 1989, 84: 90–113

    Article  MATH  MathSciNet  Google Scholar 

  10. Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General Framework. Math Comp, 1989, 52: 411–435

    MATH  MathSciNet  Google Scholar 

  11. Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35: 2440–2463

    Article  MATH  MathSciNet  Google Scholar 

  12. Cockburn B, Shu C W. The Runge-Kutta discontinuous Galerkin method for conservation Laws V: Multidimensional systems. J Comput Phys, 1998, 141: 199–224

    Article  MATH  MathSciNet  Google Scholar 

  13. Cockburn B, Shu C W. Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems. J Sci Comput, 2002, 16: 173–261

    Article  MathSciNet  Google Scholar 

  14. Douglas J Jr, Gamba I M, Squeff M C J. Simulation of the transient behavior for a one-dimensional semiconductor device. Mat Apl Comput, 1986, 5: 103–122

    MATH  MathSciNet  Google Scholar 

  15. Gamba I M, Squeff M C J. Simulation of the transient behavior for a one-dimensional semiconductor device II. SIAM J Numer Anal, 1989, 26: 539–552

    Article  MATH  MathSciNet  Google Scholar 

  16. Jerome J, Shu C W. Energy models for one-carrier transport in semiconductor devices. In: Coughran W, Cole J, Lloyd P, et al., eds. IMA Volumes in Mathematics and Its Applications, vol. 59. Berlin: Springer-Verlag, 1994, 185–207

    Google Scholar 

  17. Johnson C, Pitkäranta J. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math Comp, 1986, 46: 1–26

    Article  MATH  MathSciNet  Google Scholar 

  18. Lesaint P, Raviart P A. On a finite element method for solving the neutron transport equation. In: de Boor C, ed. Mathematical Aspects of Finite Elements in Partial Differential Equations. New York: Academic Press, 1974, 89–145

    Google Scholar 

  19. Liu Y, Shu C W. Local discontinuous Galerkin methods for moment models in device simulations: Formulation and one-dimensional results. J Comput Electronics, 2004, 3: 263–267

    Article  Google Scholar 

  20. Liu Y, Shu C W. Local discontinuous Galerkin methods for moment models in device simulations: Performance assessment and two-dimensional results. Appl Numer Math, 2007, 57: 629–645

    Article  MATH  MathSciNet  Google Scholar 

  21. Richter G R. An optimal-order error estimate for the discontinuous Galerkin method. Math Comp, 1988, 50: 75–88

    Article  MATH  MathSciNet  Google Scholar 

  22. Rivière B, Wheeler M F. A discontinuous Galerkin methods applied to nonlinear parabolic equations, in discontinuous Galerkin methods: Theory, computation and application. In: Cockburn B, Karniadakis G, Shu C W, eds. Lecture Notes in Computational Science and Egnineering, vol. 11. Berlin: Springer, 2000, 231–244

    Google Scholar 

  23. Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Comput Phys, 1988, 77: 439–471

    Article  MATH  MathSciNet  Google Scholar 

  24. Xu Y, Shu C W. Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convectiondiffusion and KdV equations. Comput Methods Appl Mech Engrg, 2007, 196: 3805–3822

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu Y, Shu C W. Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Comm Comput Phys, 2010, 7: 1–46

    MathSciNet  Google Scholar 

  26. Yan J, Shu C W. A local discontinuous Galerkin method for KdV type equations. SIAM J Numer Anal, 2002, 40: 769–791

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang Q, Shu C W. Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J Numer Anal, 2004, 42: 641–666

    Article  MathSciNet  Google Scholar 

  28. Zhang Q, Shu C W. Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for symmetrizable systems of conservation laws. SIAM J Numer Anal, 2006, 44: 1703–1720

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YunXian Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Shu, CW. Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models. Sci. China Math. 53, 3255–3278 (2010). https://doi.org/10.1007/s11425-010-4075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-4075-7

Keywords

MSC(2000)

Navigation