Skip to main content
Log in

Rational double points on Enriques surfaces

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We classify, up to some lattice-theoretic equivalence, all possible configurations of rational double points that can appear on a surface whose minimal resolution is a complex Enriques surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akyol A, Degtyarev A. Geography of irreducible plane sextics. Proc Lond Math Soc (3), 2015, 111: 1307–1337

    Article  MathSciNet  Google Scholar 

  2. Artal-Bartolo E. Sur les couples de Zariski. J Algebraic Geom, 1994, 3: 223–247

    MathSciNet  MATH  Google Scholar 

  3. Barth W, Hulek K, Peters C, et al. Compact Complex Surfaces, 2nd ed. A Series of Modern Surveys in Mathematics, vol. 4. Berlin: Springer-Verlag, 2004

    Book  Google Scholar 

  4. Barth W, Peters C. Automorphisms of Enriques surfaces. Invent Math, 1983, 73: 383–411

    Article  MathSciNet  Google Scholar 

  5. Borcherds R. Automorphism groups of Lorentzian lattices. J Algebra, 1987, 111: 133–153

    Article  MathSciNet  Google Scholar 

  6. Borcherds R. Coxeter groups, Lorentzian lattices, and K3 surfaces. Int Math Res Not IMRN, 1998, 1998: 1011–1031

    Article  MathSciNet  Google Scholar 

  7. Conway J H, Sloane N J A. Sphere Packings, Lattices and Groups, 3rd ed. Grundlehren der Mathematischen Wissenschaften, vol. 290. New York: Springer-Verlag, 1999

    Book  Google Scholar 

  8. Ebeling W. Lattices and Codes, 3rd ed. Advanced Lectures in Mathematics. Wiesbaden: Vieweg+Teubner Verlag, 2013

    Book  Google Scholar 

  9. Humphreys J E. Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge: Cambridge University Press, 1990

    Book  Google Scholar 

  10. Hwang D S, Keum J H, Ohashi H. Gorenstein ℚ-homology projective planes. Sci China Math, 2015, 58: 501–512

    Article  MathSciNet  Google Scholar 

  11. Keum J H, Zhang D-Q. Fundamental groups of open K3 surfaces, Enriques surfaces and Fano 3-folds. J Pure Appl Algebra, 2002, 170: 67–91

    Article  MathSciNet  Google Scholar 

  12. Miranda R, Morrison D R. Embeddings of integral quadratic forms. Electronic, https://web.math.ucsb.edu/~drm/manuscripts/eiqf.pdf, 2009

  13. Nikulin V V. Integer symmetric bilinear forms and some of their geometric applications. Izv Akad Nauk SSSR Ser Mat, 1979, 43: 111–177; English translation, Math USSR-Izv, 1980, 14: 103–167

    MathSciNet  MATH  Google Scholar 

  14. Nikulin V V. Quotient-groups of groups of automorphisms of hyperbolic forms of subgroups generated by 2-reflections. Dokl Akad Nauk SSSR, 1979, 248: 1307–1309; English translation, On factor groups of the automorphism groups of hyperbolic forms modulo subgroups generated by 2-reflections. Soviet Math Dokl, 1979, 20: 1156–1158

    MathSciNet  Google Scholar 

  15. Nikulin V V. Description of automorphism groups of Enriques surfaces. Dokl Akad Nauk SSSR, 1984, 277: 1324–1327; English translation, Soviet Math Dokl, 1984, 30: 282–285

    MathSciNet  Google Scholar 

  16. Rams S, Schütt M. On Enriques surfaces with four cusps. Publ Res Inst Math Sci, 2018, 54: 433–468

    Article  MathSciNet  Google Scholar 

  17. Schütt M. Moduli of Gorenstein ℚ-homology projective planes. arXiv:1505.04163, 2015

  18. Shimada I. On normal K3 surfaces. Michigan Math J, 2007, 55: 395–416

    Article  MathSciNet  Google Scholar 

  19. Shimada I. Lattice Zariski κ-ples of plane sextic curves and Z-splitting curves for double plane sextics. Michigan Math J, 2010, 59: 621–665

    Article  MathSciNet  Google Scholar 

  20. Shimada I. Topology of curves on a surface and lattice-theoretic invariants of coverings of the surface. In: Algebraic Geometry in East Asia. Advanced Studies in Pure Mathematics, vol. 60. Tokyo: Math Soc Japan, 2010, 361–382

    Google Scholar 

  21. Shimada I. An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces. Int Math Res Not IMRN, 2015, 22: 11961–12014

    MathSciNet  MATH  Google Scholar 

  22. Shimada I. Rational double points on Enriques surfaces: Computational data. http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3.html, 2017

  23. Shimada I. Connected components of the moduli of elliptic K3 surfaces. Michigan Math J, 2018, 67: 511–559

    Article  MathSciNet  Google Scholar 

  24. Shimada I. On an Enriques surface associated with a quartic Hessian surface. Canad J Math, 2019, 71: 213–246

    Article  MathSciNet  Google Scholar 

  25. The GAP Group. GAP — Groups, Algorithms, and Programming. Version 4.7.9; http://www.gap-system.org, 2015

  26. Vinberg È B. Some arithmetical discrete groups in Lobačevskiĭ spaces. In: Discrete Subgroups of Lie Groups and Applications to Moduli. Bombay: Oxford University Press, 1975, 323–348

    Google Scholar 

  27. Yang J-G. Sextic curves with simple singularities. Tohoku Math J (2), 1996, 48: 203–227

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Professors Matthias Schütt and Hisanori Ohashi for many discussions. Thanks are also due to the referees for many helpful comments on the first version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Shimada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimada, I. Rational double points on Enriques surfaces. Sci. China Math. 64, 665–690 (2021). https://doi.org/10.1007/s11425-019-1796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-1796-x

Keywords

MSC(2020)

Navigation