Skip to main content
Log in

On the vortex filament in 3-spaces and its generalizations

  • Reviews
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this article, we devote to a mathematical survey on the theory of the vortex filament in 3-dimensional spaces and its generalizations. We shall present some effective geometric tools applied in the study, such as the Schrödinger flow, the geometric Korteweg-de Vries (KdV) flow and the generalized bi-Schrödinger flow, as well as the complex and para-complex structures. It should be mentioned that the investigation in the imaginary part of the octonions looks very fascinating, since it relates to almost complex structures and the G2 structure on \({\mathbb{S}^6}\). As a new result in this survey, we describe the equation of generalized bi-Schrödinger flows from ℝ1 into a Riemannian surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz M J, Kaup D J, Newell A C, et al. The inverse scattering transform—Fourier analysis for nonlinear problems. Stud Appl Math, 1974, 53: 249–315

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekseevsky D, Medori C, Tomassina A. Homogeneous para-Kähler Einstein manifolds. Russian Math Surveys, 2009, 64: 1–43

    Article  MathSciNet  MATH  Google Scholar 

  3. Arms R J, Hama F R. Localized-induction concept on a curved vortex and motion of elliptic vortex ring. Phys Fluids, 1965, 8: 553–559

    Article  Google Scholar 

  4. Athorne C, Fordy A P. Generalized KdV and mKdV equations associated with symmetric spaces. J Phys A, 1987, 20: 1377–1386

    Article  MathSciNet  MATH  Google Scholar 

  5. Baldo S, Jerrard R L, Orlandi G, et al. Vortex density models for superconductivity and superfluidity. Comm Math Phys, 2013, 318: 131–171

    Article  MathSciNet  MATH  Google Scholar 

  6. Baryakhtar V G, Ivanov B A, Sukstanskii A L, et al. Soliton relaxation in magnets. Phys Rev B, 1997, 56: 619–635

    Article  Google Scholar 

  7. Boggess A. CR Manifolds and the Tangential Cauchy Riemann Complex. Boca Raton: CRC Press, 1991

    MATH  Google Scholar 

  8. Borowiec A, Francaviglia M, Volovich I. Anti-Kählerian manifolds. Differential Geom Appl, 2000, 12: 281–289

    Article  MathSciNet  MATH  Google Scholar 

  9. Brower B C, Kessler D A, Koplik J, et al. Geometrical models of interface evolution. Phys Rev A, 1984, 29: 1335–1342

    Article  Google Scholar 

  10. Bryant R L. Submanifolds and special structures on the octonians. J Differential Geom, 1982, 17: 185–232

    Article  MathSciNet  MATH  Google Scholar 

  11. Calabi E, Gluck H. What are the best almost complex structures on the 6-sphere? Proc Sympos Pure Math, 1993, 54: 99–106

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang N H, Shatah J, Uhlenbeck K. Schrödinger maps. Comm Pure Appl Math, 2000, 53: 590–602

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen B. Schrödinger flows to symmetric spaces and the second matrix-AKNS hierarchy. Commun Theor Phys (Beijing), 2006, 45: 653–656

    Article  MathSciNet  Google Scholar 

  14. Chou K S, Qu C Z. Integrable equations arising from motions of plane curves. Phys D, 2002, 162: 9–33

    Article  MathSciNet  MATH  Google Scholar 

  15. Cruceanu V, Fortuny P, Gadea P M. A survey on paracomplex geometry. Rocky Mountain J Math, 1996, 26: 83–115

    Article  MathSciNet  MATH  Google Scholar 

  16. Da Rios L S. On the motion of an unbounded fluid with a vortex filament of any shape. Rend Circ Mat Palermo (2), 1906, 22: 117–135

    Article  Google Scholar 

  17. Ding Q. A note on the NLS and the Schrödinger flow of maps. Phys Lett A, 1998, 248: 49–56

    Article  MATH  Google Scholar 

  18. Ding Q, He Z Z. The noncommutative KdV equation and its para-Kähler structure. Sci China Math, 2014, 57: 1505–1516

    Article  MathSciNet  MATH  Google Scholar 

  19. Ding Q, Inoguchi J. Schrödinger flows, binormal motion of curves and the second AKNS hierarchy. Chaos Solitons Fractals, 2004, 21: 669–677

    Article  MathSciNet  MATH  Google Scholar 

  20. Ding Q, Liu X, Wang W. The vortex filament in the Minkowski 3-space and generalized bi-Schrödinger maps. J Phys A, 2012, 45: 455201

    Article  MathSciNet  MATH  Google Scholar 

  21. Ding Q, Wang W, Wang Y D. A motion of spacelike curves in the Minkowski 3-space and the KdV equation. Phys Lett A, 2010, 374: 3201–3205

    Article  MathSciNet  MATH  Google Scholar 

  22. Ding Q, Wang W, Wang Y D. The Fukumoto-Moffatt’s model in the vortex filament and generalized bi-Schrödinger maps. Phys Lett A, 2011, 375: 1457–1460

    Article  MathSciNet  MATH  Google Scholar 

  23. Ding Q, Wang Y D. Geometric KdV flows, motions of curves and the third order system of the AKNS hierarchy. Internat J Math, 2011, 22: 1013–1029

    Article  MathSciNet  MATH  Google Scholar 

  24. Ding Q, Wang Y D. Vortex filament on symmetric Lie algebras and generalized bi-Schrödinger flows. Math Z, 2018, 290: 167–193

    Article  MathSciNet  MATH  Google Scholar 

  25. Ding Q, Zhong S P. The almost complex structure on \({\mathbb{S}^6}\) and related Schrödinger flows. Internat J Math, 2018, 29: 185009

    Google Scholar 

  26. Ding Q, Zhong S P. The complex 2-sphere in ℂ3 and Schrödinger flows. Sci China Math, 2020, 63: 777–788

    Article  MathSciNet  MATH  Google Scholar 

  27. Ding Q, Zhu Z N. The gauge equivalent structure of the Landau-Lifshitz equation and its applications. J Phys Soc Japan, 2003, 72: 49–53

    Article  MATH  Google Scholar 

  28. Ding W Y, Wang Y D. Schrödinger flow of maps into symplectic manifolds. Sci China Ser A, 1998, 41: 746–755

    Article  MathSciNet  MATH  Google Scholar 

  29. Doliwa A, Santini P M. An elementary geometric characterization of the integrable motions of curves. Phys Lett A, 1994, 185: 373–384

    Article  MathSciNet  MATH  Google Scholar 

  30. Dray T, Manogue C A. The Geometry of the Octonions. Singapore: World Scientific, 2015

    Book  MATH  Google Scholar 

  31. Fordy A P, Kulish P. Nonlinear Schrödinger equations and simple Lie algebras. Comm Math Phys, 1983, 80: 427–443

    Article  MATH  Google Scholar 

  32. Fukumoto Y. Three-dimensional motion of a vortex filament and its relation to the localized induction hierarchy. Eur Phys J B, 2002, 29: 167–171

    Article  Google Scholar 

  33. Fukumoto Y, Miyazaki T. Three-dimensional distortions of a vortex filament with axial velocity. J Fluid Mech, 1991, 22: 369–416

    Article  MathSciNet  MATH  Google Scholar 

  34. Fukumoto Y, Moffatt H K. Motion and expansion of a viscous vortex ring. Part I: A higher-order asymptotic formula for the velocity. J Fluid Mech, 2000, 417: 1–45

    Article  MathSciNet  MATH  Google Scholar 

  35. Gadzhimuradov T A, Agalarov A M. Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation. Phys Rev A, 2016, 93: 062124

    Article  Google Scholar 

  36. Goldstein R E, Pertich D M. The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. Phys Rev Lett, 1991, 67: 3203–3206

    Article  MathSciNet  MATH  Google Scholar 

  37. Gu C H, Hu H S, Zhou Z X. Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry. Mathematical Physics Studies, vol. 26. Dordrecht: Springer, 2005

    Book  MATH  Google Scholar 

  38. Hama F R. Progressive deformation of a curved vortex filament by its own induction. Phys Fluids, 1962, 5: 1156–1162

    Article  MATH  Google Scholar 

  39. Hashimot H, Ohashi M. Orthogonal almost complex structures of hypersurfaces of purely imaginary octonions. Hokkaido Math J, 2010, 39: 351–387

    Article  MathSciNet  MATH  Google Scholar 

  40. Hasimoto H. A soliton on a vortex filament. J Fluid Mech, 1972, 51: 477–485

    Article  MathSciNet  MATH  Google Scholar 

  41. Helgason S. Differential Geometry, Lie Groups and Symmetric Spaces. New York-San Francisco-London: Academic Press, 1978

    MATH  Google Scholar 

  42. Helmholtz H. Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J Reine Angew Math, 1858, 55: 25–55

    MathSciNet  Google Scholar 

  43. Helmholtz H. On integrals of the hydrodynamical equations, which express vortex-motion. Philos Mag, 1867, 33: 485–512

    Article  Google Scholar 

  44. Kelvin L. The translatory velocity of a circular vortex ring. Philos Mag, 1867, 35: 511–512

    Google Scholar 

  45. Lamb G L. Solitons on moving space curves. J Math Phys, 1977, 18: 1654–1661

    Article  MathSciNet  MATH  Google Scholar 

  46. Langer J, Perline R. Poisson geometry of the filament equation. J Nonlinear Sci, 1991, 1: 71–93

    Article  MathSciNet  MATH  Google Scholar 

  47. Langer J, Perline R. Geometric realizations of Fordy-Kulish nonlinear Schrödinger systems. Pacific J Math, 2000, 195: 157–178

    Article  MathSciNet  MATH  Google Scholar 

  48. Langer J S. Instabilities and pattern formation in crystal growth. Rev Modern Phys, 1980, 52: 1–28

    Article  Google Scholar 

  49. Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Comm Pure Appl Math, 1968, 21: 467–490

    Article  MathSciNet  MATH  Google Scholar 

  50. Libermann P. Sur les structures presque paracomplexes. C R Acad Sci Paris Ser I Math, 1952, 234: 2517–2519

    MathSciNet  MATH  Google Scholar 

  51. Magri F. A simple model of the integrable Hamiltonian equation. J Math Phys, 1978, 19: 1156–1162

    Article  MathSciNet  MATH  Google Scholar 

  52. Meleshko V V, Gourjii A A, Krasnopolskaya T S. Vortex rings: History and state of the art. J Math Sci N Y, 2012, 187: 772–808

    Article  MathSciNet  MATH  Google Scholar 

  53. Musso E, Nicolodi L. Hamiltonian flows and null curves. Nonlinearity, 2010, 23: 2117–2129

    Article  MathSciNet  MATH  Google Scholar 

  54. Nahmod A, Stefanov A, Uhlenbeck K. On Schrödinger maps. Comm Pure Appl Math, 2003, 56: 114–151; Erratum: On Schrödinger maps. Comm Pure Appl Math, 2004, 57: 833–839

    Article  MathSciNet  MATH  Google Scholar 

  55. Nakayama K. Motion of curves in hyperboloid in the Minkowski space. J Phys Soc Japan, 1998, 67: 3031–3037

    Article  MathSciNet  MATH  Google Scholar 

  56. Ohashi M. On G2-invariants of curves of purely imaginary octonions. In: Recent Progress in Differential Geometry and Its Related Fields. Singapore: World Scientific, 2011, 25–40

    Chapter  Google Scholar 

  57. Ohashi M. G2-congruence theorem for curves in purely imaginary octonions and its application. Geom Dedicata, 2013, 163: 1–17

    Article  MathSciNet  MATH  Google Scholar 

  58. Olver P J, Sokolov V V. Integrable evolution equations on associative algebra. Comm Math Phys, 1998, 193: 245–268

    Article  MathSciNet  MATH  Google Scholar 

  59. Onodera E. Local existence of a fourth-order dispersive curve flow on locally Hermitian symmetric spaces and its applications. Differential Geom Appl, 2019, 67: 101560

    Article  MathSciNet  MATH  Google Scholar 

  60. Pessers V, Van der Veken J. On holomorphic Riemannian geometry and submanifolds of Wick-related spaces. J Geom Phys, 2016, 104: 163–174

    Article  MathSciNet  MATH  Google Scholar 

  61. Petersen P. Riemannian Geometry, 2nd ed. New York: Springer, 2006

    MATH  Google Scholar 

  62. Pinkall U. Hamiltonian flows on the space of star-shaped curves. Results Math, 1995, 27: 328–332

    Article  MathSciNet  MATH  Google Scholar 

  63. Pohlmeyer K. Integrable Hamiltonian systems and interactions through quadratic constraints. Comm Math Phys, 1976, 46: 207–221

    Article  MathSciNet  MATH  Google Scholar 

  64. Rashevskii P K. Scalar fields in a fibre space (in Russian). Tr Semin Vekt Tenzor Anal, 1948, 6: 225–248

    Google Scholar 

  65. Saffman P G, Taylor G. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc R Soc Lond Ser A Math Phys Eng Sci, 1958, 245: 312–329

    MathSciNet  MATH  Google Scholar 

  66. Sun X W, Wang Y D. Some new geometric flows on Kähler manifolds. J Partial Differential Equations, 2010, 23: 194–199

    MathSciNet  Google Scholar 

  67. Sun X W, Wang Y D. KdV geometric flows on Kähler manifolds. Internat J Math, 2011, 22: 1439–1500

    Article  MathSciNet  MATH  Google Scholar 

  68. Sym A. Soliton surfaces and their applications. Phys D, 1984, 11: 409

    Article  MathSciNet  Google Scholar 

  69. Terng C L, Uhlenbeck K. Schrödinger flows on Grassmannians. AMS/IP Stud Adv Math, 2006, 36: 235–256

    Article  MATH  Google Scholar 

  70. Uby L, Isichenko L B, Yankov V V. Vortex filament dynamics in plasmas and superconductors. Phys Rev E (3), 1995, 52: 932–939

    Article  Google Scholar 

  71. Zakharov V E, Takhtadzhyan L A. Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet. Theoret Math Phys, 1979, 38: 17–23

    Article  Google Scholar 

  72. Zhong S P. The almost complex (para-complex) structures on 6-pseudo-Riemannian spheres and related Schrödinger flows. Complex Anal Synerg, 2020, 6: 5

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant Nos. 11531012, 11926307 and 12071080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Ding.

Additional information

In Memory of Professor Zhengguo Bai (1916–2015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Zhong, S. On the vortex filament in 3-spaces and its generalizations. Sci. China Math. 64, 1331–1348 (2021). https://doi.org/10.1007/s11425-020-1839-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1839-5

Keywords

MSC(2020)

Navigation