Skip to main content
Log in

Triazatruxene-containing hyperbranched polymers: Microwave-assisted synthesis and optoelectronic properties

  • Articles
  • SPECIAL TOPIC · Highly Branched Polymers — Promising Architectural Macromolecules
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hyperbranched polymer structures represent a class of high-functionality building blocks with excellent three-dimensional topology for the construction of highly substituted conjugated polymers. In this contribution, an efficient microwave synthesis protocol toward the synthesis of conjugated hyperbranched polymers is presented. A novel series of soluble hyperbranched polyfluorenes (PTF1-PTF3) incorporating triazatruxene moiety as the branch units with various branching degrees have thus been successfully constructed with good yields and high molecular weight via a facile “A2+B2+C3” approach. The structures of the hyperbranched polymers were confirmed by NMR and GPC. Their thermal, optical, and electrochemical properties of the hyperbranched polymers were also investigated. The results showed that introduction of triazatruxene units into the hyperbranched structure endowed the polymer with good thermal stability and highly amorphous properties. Photophysical investigation of PTFx revealed strong blue emission in both solution and solid states. Hyperbranched polymers with higher degree of branching and proper content of linear fluorene units exhibited better photophysical properties in terms of narrow emission spectra and relatively high quantum efficiency as well as improved thermal spectral stability. The triazatruxene branching unit also played a role in raising the HOMO energy levels relative to those of polyfluorenes that would help to improve the charge injection and transport properties. The incorporation of triazatruxene unit into hyperbranched polymers has thus explored an effective avenue for constructing optoelectronic polymers with improved functional characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao C, Yan DY. Hyperbranched polymers: From synthesis to applications. Prog Polym Sci, 2004, 29: 183–275

    Article  CAS  Google Scholar 

  2. Kim YH. Hyperbranched polymers 10 years after. J Polym Sci A: Polym Chem, 1998, 36(11): 1685–1698

    Article  CAS  Google Scholar 

  3. Voit B. New developments in hyperbranched polymers. J Polym Sci A: Polym Chem, 2000, 38(14): 2505–2525

    Article  CAS  Google Scholar 

  4. Häußler M, Tang BZ. Functional hyperbranched macromolecules constructed from acetylenic triple-bond building blocks. Adv Polym Sci, 2007, 209: 1–58

    Article  Google Scholar 

  5. Jim CKW, Qin AJ, Lam JMY, Liu JZ, Haeussler M, Tang BZ. Amine-catalzed polycylotrimerization of arylene bipropiolate: A metal-free and regioselective route to hyperbranched polymer. Sci China Ser B-Chem, 2008, 51(8): 705–708

    Article  CAS  Google Scholar 

  6. Bai FL, Zheng M, Lin T, Yang JL, He QG, Li YL, Zhu DB. The new approaches to light emitting conjugated polymers-alternating copolymers with hole transport chromophores and hyperbranched polymers. Synth Met, 2001, 119: 179–180

    Article  CAS  Google Scholar 

  7. Qiao J, Yan CH, He QG, Bai FL, Li YF. Hyperbranched conjugated polymers for photovoltaic applications. J Appl Polym Sci, 2004, 92(3): 1459–1466

    Article  CAS  Google Scholar 

  8. Li J. Bo ZS. “AB2 + AB” approach to hyperbranched polymers used as polymer blue light emitting materials. Macromolecules, 2004, 37(6): 2013–2015

    Article  CAS  Google Scholar 

  9. Liu XM, Lin T, Huang J, Hao XT, Ong KS, He CB. Hyperbranched blue to red light-emitting polymers with tetraarylsilyl cores: Synthesis, optical and electroluminescence properties, and ab initio modeling studies. Macromolecules, 2005, 38(10): 4157–4168

    Article  CAS  Google Scholar 

  10. Cao XY, Zhou XH, Zi H, Pei J. Novel Blue-light-emitting truxene-containing hyperbranched and zigzag type copolymers: Synthesis, optical properties, and investigation of thermal spectral stability. Macromolecules, 2004, 37(24): 8874–8882

    Article  CAS  Google Scholar 

  11. Yu JM, Chen Y. Multifunctional hyperbranched oligo(fluorene vinylene) containing pendant crown ether: Synthesis, chemosensory, and electroluminescent properties, Macromolecules, 2009, 42(21): 8052–8061

    Article  CAS  Google Scholar 

  12. Li ZA, Ye SH, Liu YQ, Yu G, Wu WB, Qin JG, Li Z. New hyperbranched conjugated polymers containing hexaphenylbenzene and oxadiazole units: Convenient synthesis and efficient deep blue emitters for PLEDs application. J Phys Chem B, 2010, 114(28): 9101–9108

    Article  CAS  Google Scholar 

  13. Shi JB, Jim CJW, Liu JZ, Lam JWY, Sung HHY, Williams ID, Wu C, Dong YP. Ferrocene-decorated hyperbranched polyphenylenes: Synthesis, redox activity, refractive index and soft ferromagnetism. Macromolecules, 2010, 43: 680–690

    Article  CAS  Google Scholar 

  14. Xin Y, Wen GA, Zeng WJ, Zhao L, Zhu XR, Fan QL, Feng JC, Wang LH, Wei W, Peng B, Cao Y, Huang W. Hyperbranched oxadiazole-ontaining polyfluorenes: Toward stable blue light PLEDs. Macromolecules, 2005, 38(16): 6755–6758

    Article  CAS  Google Scholar 

  15. Wen GA, Xin Y, Zhu XR, Zeng WJ, Zhu R, Feng JC, Cao Y, Zhao L, Wang LH, Wei W, Peng B, Huang W. Hyperbranched triazine-containing polyfluorenes: Efficient blue emitters for polymer light-emitting diodes (PLEDs). Polymer, 2007, 48(7): 1824–1829

    Article  CAS  Google Scholar 

  16. He QY, Lai WY, Ma Z, Chen DY, Huang W. Novel blue light-emitting hyperbranched polyfluorenes incorporating carbazole kinked structure. Eur Polym J, 2008, 44(10): 3169–3176

    Article  CAS  Google Scholar 

  17. Lai WY, Chen QQ, He QY, Fan QL, Huang W. Microwave-enhanced multiple Suzuki couplings toward highly luminescent starburst monodisperse macromolecules. Chem Commun, 2006, 18: 1959–1961

    Article  Google Scholar 

  18. Lai WY, Zhu R, Fan QL, Hou LT, Cao Y, Huang W. Monodisperse six-armed triazatruxenes: Microwave-enhanced synthesis and highly efficient pure-deep-blue electroluminescence. Macromolecules, 2006, 39: 3707–3709

    Article  CAS  Google Scholar 

  19. Lai WY, He QY, Zhu R, Chen QQ, Huang W. Kinked star-shaped fluorene/triazatruxene co-oligomer hybrids with enhanced functional properties for high-performance solution-processed blue OLEDs, Adv Funct Mater, 2008, 18: 265–276

    Article  CAS  Google Scholar 

  20. Zhu R, Lai WY, Wang HY, Yu N, Wei W, Peng B, Huang W, Hou LT, Peng JB, Cao Y. Monodisperse star-shaped compound and its blend in uncapped polyfluorene matrixes as the active materials for high-performance pure blue light-emitting devices. Appl Phys Lett, 2007, 90: 141909

    Article  Google Scholar 

  21. Levermore PA, Xia R, Lai WY, Wang XH, Huang W, Bradley DDC. Deep-blue light emitting triazatruxene core/oligo-fluorene branch dendrimers for electroluminescence and optical gain applications. J Phys D: Appl Phys 2007, 40(7): 1896–1901

    Article  CAS  Google Scholar 

  22. Liu F, Lai WY, Tang C, Wu HB, Chen QQ, Peng B, Wei W, Huang W, Cao Y. Synthesis and characterization of pyrene-centered starburst oligofluorenes. Macromol Rapid Commun, 2008, 29: 659–664

    Article  CAS  Google Scholar 

  23. Lai WY, Zhu XR, He QY, Huang W. Synthesis and properties of triphenylamine- and 9-phenylcarbazole-cored star-shaped terfluorenes: Understanding the effect of molecular dimensionality, Chem Lett, 2009, 38(5): 392–393

    Article  CAS  Google Scholar 

  24. Lai WY, He QY, Ma Z, Huang W. Synthesis and characterization of 2,3,7,8,12,13-hexabromotruxene and its hexaaryl derivatives. Chem Lett, 2009, 38(3): 286–287

    Article  CAS  Google Scholar 

  25. Lai WY, Xia R, Bradley DDC, Huang W. 2,3,7,8,12,13-Hexaaryltruxenes: An ortho-substituted multiarm design and microwave-accelerated synthesis toward starburst macromolecular materials with well-defined π-delocalization, Chem Eur J, 2010, 16(28): 8471–8479

    Article  CAS  Google Scholar 

  26. Lai WY, Xia R, He QY, Levermore PA, Huang W, Bradley DDC. Enhanced solid-state luminescence and low-threshold lasing from starburst macromolecular materials, Adv Mater, 2009, 21: 355–360

    Article  CAS  Google Scholar 

  27. Xia R, Lai WY, Levermore PA, Huang W, Bradley DDC. Low-threshold distributed-feedback lasers based on pyrene-cored starburst molecules with 1,3,6,8-attached oligo(9,9-dialkylfluorene) arms. Adv Funct Mater, 2009, 19: 2844–2850

    Article  CAS  Google Scholar 

  28. Grazulevicius JV, Strohriegl P, Pielichowski J, Pielichowski K. Carbazole-containing polymers: Synthesis, properties and applications. Prog Polym Sci, 2003, 28(9): 1297–1353

    Article  CAS  Google Scholar 

  29. Morin JF, Leclerc M, Adès D, Siove A. Polycarbazoles: 25 Years of progress. Macromol Rapid Commun, 2005, 26(10): 761–778

    Article  Google Scholar 

  30. Janosik T, Wahlstrom N, Bergman J. Recent progress in the chemistry and applications of indolocarbazoles. Tetrahedron, 2008, 64(39): 9159–9180

    Article  CAS  Google Scholar 

  31. Sun YH, Zhu XH, Zhao Z, Zhang Y, Cao Y. Potential solution processible phosphorescent iridium complexes toward applications in doped light-emitting diodes: Rapid syntheses and optical and morphological characterizations. J Org Chem, 2006, 71(16): 6281–6284

    Article  CAS  Google Scholar 

  32. Feng GL, Ji SJ, Lai WY, Huang W. Synthesis and optical properties of starburst carbazoles based on 9-phenylcarbazole core. Syn Lett, 2006, 17: 2841–2845

    Google Scholar 

  33. Feng GL, Lai WY, Ji SJ, Huang W. Synthesis of novel star-shaped carbazole-functionalized triazatruxenes. Tetrahedron Lett, 2006, 47: 7089–7092

    Article  CAS  Google Scholar 

  34. Lai WY, He QY, Chen DY, Huang W. Synthesis and characterization of starburst 9-phenylcarbazole/triazatruxene hybrids, Chem Lett, 2008, 37(9): 986–987

    Article  CAS  Google Scholar 

  35. Robertson N, Parsons S, MacLean EJ, Coxall RA, Mount AR. Preparation, X-ray structure and properties of a hexabrominated, symmetric indole trimer and its TCNQ adduct: A new route to functional molecular systems. J Mater Chem, 2000, 10, 2043–2047

    Article  CAS  Google Scholar 

  36. Gómez-Lor B, Echavarren AM. Synthesis of a triaza analogue of crushed-fullerene by intramolecular palladium-catalyzed arylation. Org Lett, 2004, 6(17): 2993–2996

    Article  Google Scholar 

  37. Hayes BL. Microwave synthesis: Chemistry at the speed of light. American: Matthews NC: CEM Publishing, 2002: 14

    Google Scholar 

  38. Wiesbrock F, Hoogenboom R, Schubert US. Microwave-assisted polymer synthesis: State-of-the-art and future perspectives. Macromol Rapid Commun, 2004, 25(20): 1739–1764

    Article  CAS  Google Scholar 

  39. Carter RK. Nickel(0)-mediated coupling polymerizations via microwave-assisted chemistry. Macromolecules, 2002, 35(18): 6757–6759

    Article  CAS  Google Scholar 

  40. Nehls BS, Asawapirom U, Füldner S, Preis E, Farrell T, Scherf U. Semiconducting polymers via microwave-assisted Suzuki and Stille cross-coupling reactions. Adv Funct Mater, 2004, 14(4): 352–256

    Article  CAS  Google Scholar 

  41. Miyaura N, Suzuki A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev, 1995, 95(7): 2457–2483

    Article  CAS  Google Scholar 

  42. Sakamoto J, Rehahn M, Wegner G, Schluter AD. Suzuki polycondensation: Polyarylenes à la carte. Macromol Rapid Commun, 2009, 30: 653–687

    Article  CAS  Google Scholar 

  43. Markoski LJ, Thompson JL, Moore JS. Indrect method for determining degree of branching in hyperbranched polymers. Macromolecules, 2002, 35(5): 1599–1603

    Article  CAS  Google Scholar 

  44. Janietz S, Bradley DDC, Grell M, Giebeler C, Inbasekaran M, Woo EP. Electrochemical determination of the ionization potential and electron affinity of poly(9,9-dioctylfluorene). Appl Phys Lett, 1998, 73(17): 2453–2455

    Article  CAS  Google Scholar 

  45. Brown TM, Kim JS, Friend RH, Cacialli F, Daik R, Feast WJ. Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer. Appl Phys Lett, 1999, 75(12): 1679–1681

    Article  CAS  Google Scholar 

  46. Montilla F, Mallavia R. On the origin of green emission bands in fluorene-based conjugated polymers. Adv Funct Mater, 2007, 17, 71–78

    Article  CAS  Google Scholar 

  47. Lai WY, Mei QB, Song J, Huang W. Advances in blue-light-emitting polymer materials, J Nanjing Univ Posts Telecommun (Nat Sci), (in Chinese), 2008, 28(2): 88–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to WenYong Lai or Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, W., Liu, D. & Huang, W. Triazatruxene-containing hyperbranched polymers: Microwave-assisted synthesis and optoelectronic properties. Sci. China Chem. 53, 2472–2480 (2010). https://doi.org/10.1007/s11426-010-4152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4152-3

Keywords

Navigation