Skip to main content
Log in

A literature survey on smart cities

智慧城市研究综述

  • Review
  • Special Focus on Intelligent City and Big Data
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Rapid urbanization creates new challenges and issues, and the smart city concept offers opportunities to rise to these challenges, solve urban problems and provide citizens with a better living environment. This paper presents an exhaustive literature survey of smart cities. First, it introduces the origin and main issues facing the smart city concept, and then presents the fundamentals of a smart city by analyzing its definition and application domains. Second, a data-centric view of smart city architectures and key enabling technologies is provided. Finally, a survey of recent smart city research is presented. This paper provides a reference to researchers who intend to contribute to smart city research and implementation.

创新点

世界范围内的快速城镇化给城市发展带来了很多新的问题和挑战, 智慧城市概念的出现, 为解决当前城市难题、提供更好的城市环境提供了有效的解决途径。论文介绍了智慧城市的起源, 总结了智慧城市领域的三个主要问题, 通过详细的综述性文献研究展开对这些问题的探讨。论文首先对智慧城市的定义和应用领域进行了归纳和分析, 然后研究了智慧城市的体系架构, 提出了智慧城市以数据为中心、多领域融合的相关特征, 并定义了以数据活化技术为核心的层次化体系架构, 并介绍了其中的关键技术, 最后选取了城市交通、城市群体行为、城市规划三个具有代表性的应用领域介绍了城市数据分析与处理的最新研究进展和存在问题。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. United Nations, Department of Economic and Social Affairs. World urbanization prospects: the 2014 revision. New York, 2014. http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf

    Google Scholar 

  2. National Bureau of Statistics of China. China’s population and its composition in 2014. Beijing, 2014. http://www.stats.gov.cn/tjsj/ndsj/2014/indexeh.htm

    Google Scholar 

  3. Kourtit K, Nijkamp P. In praise of megacities in a global world. Reg Sci Policy Pract, 2013, 5: 167–182

    Article  Google Scholar 

  4. Abu-Lughod J, Hay R J. Third world urbanization. Abingdon: Routledge Kegan & Paul, 2013

    Google Scholar 

  5. Davis K. The urbanization of the human population. In: Menard S W, Moen E W, eds. Perspectives on Population: an Introduction to Concepts and Issues. New York: Oxford University Press, 1987. 322–330

    Google Scholar 

  6. Bertinelli L, Black D. Urbanization and growth. J Urban Econ, 2004, 56: 80–96

    Article  Google Scholar 

  7. Haughton G. Developing sustainable urban development models. Cities, 1997, 14: 189–195

    Article  Google Scholar 

  8. Yang X J. China’s rapid urbanization. Science, 2013, 342: 310

    Article  Google Scholar 

  9. Calder´on-Garcidueñas L, Kulesza R J, Doty R L, et al. Megacities air pollution problems: Mexico City Metropolitan Area critical issues on the central nervous system pediatric impact. Environ Res, 2015, 137: 157–169

    Article  Google Scholar 

  10. Schrank D, Lomax T, Eisele B. 2011 urban mobility report. 2011

    Google Scholar 

  11. Halicioglu F, Andrés A R, Yamamura E. Modeling crime in Japan. Econ Model, 2012, 29: 1640–1645

    Article  Google Scholar 

  12. Armbrust M, Fox A, Griffith R, et al. A view of cloud computing. Commun ACM, 2010, 53: 50–58

    Article  Google Scholar 

  13. McAfee A, Brynjolfsson E. Big data: the management revolution. Harvard Bus Rev, 2012, 90: 60–68

    Google Scholar 

  14. Kopetz H. Real-time Systems. New York: Springer, 2011. 307–323

    MATH  Google Scholar 

  15. Yuan Y M, Qin X, Wu C L, et al. Architecture and data vitalization of smart city. Adv Mater Res, 2012, 403: 2564–2568

    Google Scholar 

  16. Satyanarayanan M. Mobile computing: the next decade. In: Proceedings of 1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond. New York: ACM, 2011. 5

    Google Scholar 

  17. Gibson D V, Kozmetsky G, Smilor R W. The Technopolis Phenomenon: Smart Cities, Fast Systems, Global Networks. Rowman & Littlefield Publishers, 1992

    Google Scholar 

  18. Palmisano S J. A smarter planet: the next leadership agenda. IBM, 2008

    Google Scholar 

  19. Harrison C, Eckman B, Hamilton R, et al. Foundations for smarter cities. IBM J Res Develop, 2010, 54: 1–16

    Article  Google Scholar 

  20. Giffinger R, Gudrun H. Smart cities ranking: an effective instrument for the positioning of the cities? Architecture. City Environ, 2010, 4: 7–26

    Google Scholar 

  21. Washburn D, Sindhu U, Balaouras S, et al. Helping CIOs understand ‘smart city’ initiatives. Growth, 2009, 17

    Google Scholar 

  22. Su K, Li J, Fu H. Smart city and the applications. In: Proceedings of IEEE International Conference on Electronics, Communications and Control (ICECC), Ningbo, 2011. 1028–1031

    Google Scholar 

  23. Mitton N, Papavassiliou S, Puliafito A, et al. Combining Cloud and sensors in a smart city environment. EURASIP J Wirel Commun Netw, 2012, 2012: 1–10

    Article  Google Scholar 

  24. Nam T, Pardo T A. Conceptualizing smart city with dimensions of technology, people, and institutions. In: Proceedings of 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times. New York: ACM, 2011. 282–291

    Google Scholar 

  25. Bronstein Z. Industry and the smart city. Dissent, 2009, 56: 27–34

    Article  MathSciNet  Google Scholar 

  26. Digital Agenda Scoreboard 2015: Most targets reached, time has come to lift digital borders. Website of Digital Agenda for Europe.http://ec.europa.eu/digital-agenda/en

  27. Hosaka T A. Japan creating ‘smart city’ of the future. San Francisco Chronicle. Associated Press, October 11, 2010

    Google Scholar 

  28. Ng P T. Embracing emerging technologies: the case of the Singapore Intelligent Nation 2015 Vision. In: de Pablos P O, Lee W B, Zhao J Y, eds. Regional Innovation Systems and Sustainable Development: Emerging Technologies. Hershey: IGI Global, 2011. 115–123

    Chapter  Google Scholar 

  29. Liu P, Peng Z. China’s smart city pilots: a progress report. Computer, 2014, 47: 72–81

    Article  Google Scholar 

  30. Tiwari A. Urban sciences, big data and India’s smart initiative. Global J Multidiscip Stud, 2014, 3

    Google Scholar 

  31. Pellicer S, Santa G, Bleda A L, et al. A global perspective of smart cities: a survey. In: Proceedings of 7th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), Taichung, 2013. 439–444

    Google Scholar 

  32. Chourabi H, Nam T, Walker S, et al. Understanding smart cities: an integrative framework. In: Proceedings of 45th Hawaii International Conference on System Science, Maui, 2012. 2289–2297

    Google Scholar 

  33. Paroutis S, Bennett M, Heracleous L. A strategic view on smart city technology: the case of IBM Smarter Cities during a recession. Technol Forecast Soc Change, 2014, 89: 262–272

    Article  Google Scholar 

  34. Batty M. Big data, smart cities and city planning. Dialogues Hum Geogr, 2013, 3: 274–279

    Article  Google Scholar 

  35. Kitchin R. The real-time city? Big data and smart urbanism. GeoJournal, 2014, 79: 1–14

    Article  Google Scholar 

  36. Zhang D, Song T, Li J, et al. A linked data-based framework for personalized services information retrieval in smart city. In: Proceedings of Workshops on Web Information Systems Engineering. Berlin/Heidelberg: Springer, 2014. 461–473

    Google Scholar 

  37. Rong W, Xiong Z, Cooper D, et al. Smart city architecture: a technology guide for implementation and design challenges. Netw Technol Appl, 2014, 11: 56–69

    Google Scholar 

  38. Nam T, Pardo T A. Smart city as urban innovation: Focusing on management, policy, and context. In: Proceedings of 5th International Conference on Theory and Practice of Electronic Governance. New York: ACM, 2011. 185–194

    Google Scholar 

  39. Li D, Yao Y, Shao Z, et al. From digital earth to smart earth. Chin Sci Bull, 2014, 59: 722–733

    Article  Google Scholar 

  40. Yovanof G S, Hazapis G N. An architectural framework and enabling wireless technologies for digital cities & intelligent urban environments. Wirel Pers Commun, 2009, 49: 445–463

    Article  Google Scholar 

  41. –Besselaar P, Melis I, Beckers D. Digital cities: organization, content, and use. In: Ishida T, Isbister K, eds. Digital Cities: Technologies, Experiences, and Future Perspectives. Berlin/Heidelberg: Springer, 2000. 18–32

    Chapter  Google Scholar 

  42. Widmayer P. Building digital metropolis: Chicago’s future networks. IT Prof, 1999, 1: 40–46

    Article  Google Scholar 

  43. Malek J A. Informative global community development index of informative smart city. In: Proceedings of 8th WSEAS International Conference on Education and Educational Technology, Athens, 2009. 17–19

    Google Scholar 

  44. Moser M A. What is smart about the smart communities movement. EJournal, 10, 2001: 11

    Google Scholar 

  45. Komninos N, Sefertzi E. Intelligent cities: R&D offshoring, Web 2.0 product development and globalization of innovation systems. In: Proceedings of 2nd Knowledge Cities Summit, Shenzhen, 2009

    Google Scholar 

  46. Bowerman B, Braverman J, Taylor J, et al. The vision of a smart city. In: Proceedings of 2nd International Life Extension Technology Workshop, Paris, 2000

    Google Scholar 

  47. Al-Hader M, Rodzi A, Sharif A R, et al. Smart city components architecture. In: Proceedings of International Conference on Computational Intelligence, Modelling and Simulation, Brno, 2009. 93–97

    Google Scholar 

  48. Lazaroiu G C, Roscia M. Definition methodology for the smart cities model. Energy, 2012, 47: 326–332

    Article  Google Scholar 

  49. Dirks S, Keeling M. A vision of smarter cities: how cities can lead the way into a prosperous and sustainable future. IBM Institute for Business Value, 2009

    Google Scholar 

  50. Moss Kanter R, Litow S S. Informed and interconnected: a manifesto for smarter cities. Harvard Business School General Management Unit Working Paper, 2009

    Google Scholar 

  51. Javidroozi V, Shah H, Amini A, et al. Smart city as an integrated enterprise: a business process centric framework addressing challenges in systems integration. In: Proceedings of 3rd International Conference on Smart Systems, Devices and Technologies, Paris, 2014. 55–59

    Google Scholar 

  52. Yamamoto S, Matsumoto S, Nakamura M. Using cloud technologies for large-scale house data in smart city. In: Proceedings of 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, Taipei, 2012. 141–148

    Google Scholar 

  53. Neirotti P, De Marco A, Cagliano A C, et al. Current trends in Smart City initiatives: some stylised facts. Cities, 2014, 38: 25–36

    Article  Google Scholar 

  54. Buccella C, Cecati C, Abu-Rub H. An overview on distributed generation and smart grid concepts and technologies. In: Abu-Rub H, Malinowski M, Al-Haddad K, eds. Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications. Chichester: John Wiley & Sons, 2014. 50–68

    Google Scholar 

  55. Cimmino A, Pecorella T, Fantacci R, et al. The role of small cell technology in future smart city applications. Trans Emerg Telecommun Technol, 2014, 25: 11–20

    Article  Google Scholar 

  56. Balakrishna C. Enabling technologies for smart city services and applications. In: Proceedings of 6th International Conference on Next Generation Mobile Applications, Services and Technologies, Paris, 2012. 223–227

    Google Scholar 

  57. Anthopoulos L, Fitsilis P. From digital to ubiquitous cities: defining a common architecture for urban development. In: Proceedings of 6th International Conference on Intelligent Environments, Kuala Lumpur, 2010. 301–306

    Google Scholar 

  58. Theodoridis E, Mylonas G, Chatzigiannakis I. Developing an IoT smart city framework. In: Proceedings of 4th International Conference on Information Intelligence Systems and Applications, Piraeus, 2013. 1–6

    Google Scholar 

  59. Zygiaris S. Smart city reference model: assisting planners to conceptualize the building of smart city innovation ecosystems. J Knowl Econ, 2013, 4: 217–231

    Article  Google Scholar 

  60. Xiong Z, Luo W, Chen L, et al. Data vitalization: a new paradigm for large-scale dataset analysis. In: Proceedings of IEEE 16th International Conference on Parallel and Distributed Systems, Shanghai, 2010. 251–258

    Google Scholar 

  61. Jara A J, Genoud D, Bocchi Y. Big data in smart cities: from Poisson to human dynamics. In: Proceedings of 28th International Conference on Advanced Information Networking and Applications Workshops, Victoria, 2014. 785–790

    Google Scholar 

  62. Deshpande A, Guestrin C, Madden S R, et al. Model-driven data acquisition in sensor networks. In: Proceedings of 30th International Conference on Very Large Data Bases, Toronto, 2004. 588–599

    Google Scholar 

  63. Maraiya K, Kant K, Gupta N. Wireless sensor network: a review on data aggregation. Int J Sci Eng Res, 2011, 2: 1–6

    Google Scholar 

  64. Srinivasa Prasanna G N, Lakshmi A, Sumanth S, et al. Data communication over the smart grid. In: Proceedings of IEEE International Symposium on Power Line Communications and Its Applications, Dresden, 2009. 273–279

    Google Scholar 

  65. Dey S, Chakraborty A, Naskar S, et al. Smart city surveillance: leveraging benefits of cloud data stores. In: Proceedings of IEEE 37th Conference on Local Computer Networks Workshops, Clearwater, 2012. 868–876

    Google Scholar 

  66. Harrison R, McLeod C S, Tavola G, et al. Next generation of engineering methods and tools for SOA-based largescale and distributed process applications. In: Colombo A, Bangemann Th, Karnouskos S, et al., eds. Industrial Cloud-Based Cyber-Physical Systems. Switzerland: Springer International Publishing, 2014. 137–165

    Chapter  Google Scholar 

  67. Valkanova N, Jorda S, Moere A V. Public visualization displays of citizen data: design, impact and implications. Int J Hum-Comput Stud, 2015, 81: 4–16

    Article  Google Scholar 

  68. Wang S M, Huang C J. User experience analysis on urban interaction and information service in smart city nodes. In: Proceedings of 2nd International Symposium of Chinese CHI. New York: ACM, 2014. 103–109

    Google Scholar 

  69. Han Q, Liang S, Zhang H. Mobile cloud sensing, big data, and 5G networks make an intelligent and smart world. IEEE Netw, 2015, 29: 40–45

    Article  Google Scholar 

  70. Perera C, Zaslavsky A, Christen P, et al. Sensing as a service model for smart cities supported by Internet of Things. Trans Emerg Telecommun Technol, 2014, 25: 81–93

    Article  Google Scholar 

  71. Lane N D, Miluzzo E, Lu H, et al. A survey of mobile phone sensing. IEEE Commun Mag, 2010, 48: 140–150

    Article  Google Scholar 

  72. Krause A, Horvitz E, Kansal A, et al. Toward community sensing. In: Proceedings of 7th International Conference on Information Processing in Sensor Networks. Washington: IEEE, 2008. 481–492

    Google Scholar 

  73. Singla A, Krause A. Incentives for privacy tradeoff in community sensing. In: Proceedings of 1st AAAI Conference on Human Computation and Crowdsourcing, Palm Springs, 2013

    Google Scholar 

  74. Xiong Z, Zheng Y, Li C. Data vitalization’s perspective towards smart city: a reference model for data service oriented architecture. In: Proceedings of 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chicago, 2014. 865–874

    Google Scholar 

  75. Yuan Y M, Qin X, Wu C L, et al. Architecture and data vitalization of smart city. Adv Mater Res, 2012, 403: 2564–2568

    Google Scholar 

  76. Mei L, Cai X, Zhang H, et al. Video structured description—vitalization techniques for the surveillance video data. In: Proceedings of 9th International Forum on Digital TV and Wireless Multimedia Communication, Shanghai, 2012. 219–227

    Google Scholar 

  77. Wu X, Zhu X, Wu G Q, et al. Data mining with big data. IEEE Trans Knowl Data Eng, 2014, 26: 97–107

    Article  MathSciNet  Google Scholar 

  78. Fan W, Bifet A. Mining big data: current status, and forecast to the future. ACM SIGKDD Explor Newslett, 2013, 14: 1–5

    Article  MATH  Google Scholar 

  79. Pan G, Qi G, Zhang W, et al. Trace analysis and mining for smart cities: issues, methods, and applications. IEEE Commun Mag, 2013, 51: 120–126

    Article  Google Scholar 

  80. Herman I, Melanon G, Marshall M S. Graph visualization and navigation in information visualization: a survey. IEEE Trans Vis Comput Graph, 2000, 6: 24–43

    Article  Google Scholar 

  81. Ferreira N, Poco J, Vo H T, et al. Visual exploration of big spatio-temporal urban data: a study of new york city taxi trips. IEEE Trans Vis Comput Graph, 2013, 19: 2149–2158

    Article  Google Scholar 

  82. Anwar A, Nagel T, Ratti C. Traffic origins: a simple visualization technique to support traffic incident analysis. In: Proceedings of IEEE Pacific Visualization Symposium, Yokohama, 2014. 316–319

    Google Scholar 

  83. Liu L, Andris C, Ratti C. Uncovering cabdrivers’ behavior patterns from their digital traces. Comput Environ Urban Syst, 2010, 34: 541–548

    Article  Google Scholar 

  84. Calabrese F, Colonna M, Lovisolo P, et al. Real-time urban monitoring using cell phones: a case study in Rome. IEEE Trans Intell Transp Syst, 2011, 12: 141–151

    Article  Google Scholar 

  85. Barria J A, Thajchayapong S. Detection and classification of traffic anomalies using microscopic traffic variables. IEEE Trans Intell Transp Syst, 2011, 12: 695–704

    Article  Google Scholar 

  86. Gühnemann A, Scháfer R P, Thiessenhusen K U, et al. Monitoring traffic and emissions by floating car data. Institute of Transport Studies Working Paper, 2004

    Google Scholar 

  87. Kanoulas E, Du Y, Xia T, et al. Finding fastest paths on a road network with speed patterns. In: Proceedings of 22nd International Conference on Data Engineering. Washington: IEEE, 2006. 10

    Google Scholar 

  88. Pfoser D, Brakatsoulas S, Brosch P, et al. Dynamic travel time provision for road networks. In: Proceedings of 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2008. 68

    Google Scholar 

  89. Zheng Y, Chen Y, Li Q, et al. Understanding transportation modes based on GPS data for Web applications. ACM Trans Web, 2010, 4: 1

    Article  Google Scholar 

  90. Castro P S, Zhang D, Li S. Urban traffic modelling and prediction using large scale taxi GPS traces. In: Proceedings of 10th International Conference, Pervasive 2012, Newcastle, 2012. 57–72

    Google Scholar 

  91. Gonzalez H, Han J, Li X, et al. Adaptive fastest path computation on a road network: a traffic mining approach. In: Proceedings of 33rd International Conference on Very Large Data Bases, Vienna, 2007. 794–805

    Google Scholar 

  92. Ziebart B D, Maas A L, Dey A K, et al. Navigate like a cabbie: probabilistic reasoning from observed contextaware behavior. In: Proceedings of 10th International Conference on Ubiquitous Computing. New York: ACM, 2008. 322–331

    Google Scholar 

  93. Li B, Zhang D, Sun L, et al. Hunting or waiting? Discovering passenger-finding strategies from a large-scale realworld taxi dataset. In: Proceedings of IEEE International Conference on Pervasive Computing and Communications Workshops, Seattle, 2011. 63–68

    Google Scholar 

  94. Sun L, Zhang D, Chen C, et al. Real time anomalous trajectory detection and analysis. Mob Netw Appl, 2013, 18: 341–356

    Article  Google Scholar 

  95. Ceapa I, Smith C, Capra L. Avoiding the crowds: understanding tube station congestion patterns from trip data. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, Beijing, 2012. 134–141

    Google Scholar 

  96. Yousaf J, Li J, Chen L, et al. Generalized multipath planning model for ride-sharing systems. Front Comput Sci, 2014, 8: 100–118

    Article  MathSciNet  Google Scholar 

  97. Leng B, Zeng J, Xiong Z, et al. Probability tree based passenger flow prediction and its application to the Beijing subway system. Front Comput Sci, 2013, 7: 195–203

    Article  MathSciNet  Google Scholar 

  98. Barabasi A L. The origin of bursts and heavy tails in human dynamics. Nature, 2005, 435: 207–211

    Article  Google Scholar 

  99. Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel. Nature, 2006, 439: 462–465

    Article  Google Scholar 

  100. Hong W, Han X P, Zhou T, et al. Heavy-tailed statistics in short-message communication. Chin Phys Lett, 2009, 26: 028902

    Article  Google Scholar 

  101. Wu Y, Zhou C, Xiao J, et al. Evidence for a bimodal distribution in human communication. In: Proceedings of the National Academy of Sciences, 2010, 107: 18803–18808

    Google Scholar 

  102. Gonzalez M C, Hidalgo C A, Barabasi A L. Understanding individual human mobility patterns. Nature, 2008, 453: 779–782

    Article  Google Scholar 

  103. Song C, Qu Z, Blumm N, et al. Limits of predictability in human mobility. Science, 2010, 327: 1018–1021

    Article  MATH  MathSciNet  Google Scholar 

  104. Jiang B, Yin J, Zhao S. Characterizing the human mobility pattern in a large street network. Phys Rev E, 2009, 80: 021136

    Article  Google Scholar 

  105. Liang X, Zheng X, Lv W, et al. The scaling of human mobility by taxis is exponential. Phys A, 2012, 391: 2135–2144

    Article  Google Scholar 

  106. Rambaldi S, Bazzani A, Giorgini B, et al. Mobility in modern cities: looking for physical laws. In: Proceedings of the European Conference on Complex Systems, Dresden, 2007. 132

    Google Scholar 

  107. Bazzani A, Giorgini B, Rambaldi S, et al. Statistical laws in urban mobility from microscopic GPS data in the area of Florence. J Stat Mech-theory Exp, 2010, 2010: P05001

    Article  Google Scholar 

  108. Li R H, Liu J, Yu J X, et al. Co-occurrence prediction in a large location-based social network. Front Comput Sci, 2013, 7: 185–194

    Article  MathSciNet  Google Scholar 

  109. Yu K, Zhu H, Cao H, et al. Learning to detect subway arrivals for passengers on a train. Front Comput Sci, 2014, 8: 316–329

    Article  MathSciNet  Google Scholar 

  110. Puissant A, Hirsch J, Weber C. The utility of texture analysis to improve perpixel classification for high to very high spatial resolution imagery. Int J Remote Sens, 2005, 26: 733–745

    Article  Google Scholar 

  111. Deng J S, Wang K, Hong Y, et al. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape Urban Plan, 2009, 92: 187–198

    Article  Google Scholar 

  112. Herold M, Liu X H, Clarke K C. Spatial metrics and image texture for mapping urban land use. Photogramm Eng Remote Sens, 2003, 69: 991–1001

    Article  Google Scholar 

  113. van de Voorde T, Jacquet W, Canters F. Mapping form and function in urban areas: an approach based on urban metrics and continuous impervious surface data. Landscape Urban Plan, 2011, 102: 143–155

    Article  Google Scholar 

  114. Peng C, Jin X, Wong K C, et al. Collective human mobility pattern from taxi trips in urban area. PloS One, 2012, 7: e34487

    Article  Google Scholar 

  115. Chen D, Stow D A, Gong P. Examining the effect of spatial resolution and texture window size on classification accuracy: an urban environment case. Int J Remote Sens, 2004, 25: 2177–2192

    Article  Google Scholar 

  116. Soto V, Frias-Martinez E. Robust land use characterization of urban landscapes using cell phone data. In: Proceedings of 1st Workshop on Pervasive Urban Applications, in conjunction with 9th International Conference on Pervasive Computing, San Francisco, 2011

    Google Scholar 

  117. Pacifici F, ChiniM, EmeryWJ. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens Environ, 2009, 113: 1276–1292

    Article  Google Scholar 

  118. Luck M, Wu J. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landscape Ecol, 2002, 17: 327–339

    Article  Google Scholar 

  119. Bram J, McKay A. The evolution of commuting patterns in the New York city metro area. Curr Issues Econ Financ, 2005, 11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Xiong, Z., Chen, H. et al. A literature survey on smart cities. Sci. China Inf. Sci. 58, 1–18 (2015). https://doi.org/10.1007/s11432-015-5397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5397-4

Keywords

关键词

Navigation