Skip to main content
Log in

Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A detailed analysis has showed that the quantum secret sharing protocol based on the Grover algorithm (Phys Rev A, 2003, 68: 022306) is insecure. A dishonest receiver may obtain the full information without being detected. A quantum secret-sharing protocol is presents here, which mends the security loophole of the original secret-sharing protocol, and doubles the information capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schneier B. Applied Cryptography: Protocols, Algorithms, and Source Code in C. 2nd ed. New York: John Wiley and Sons, Inc., 1996. 70

    MATH  Google Scholar 

  2. Gruska J. Foundations of Computing. London: Thomson Computer Press, 1997. 504

    Google Scholar 

  3. Hillery M, Bu E K V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1832

    Article  MathSciNet  ADS  Google Scholar 

  4. Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  ADS  Google Scholar 

  5. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162–168

    Article  ADS  Google Scholar 

  6. Gottesman D. Theory of quantum secret sharing. Phys Rev A, 2000, 61: 042311

    Article  MathSciNet  ADS  Google Scholar 

  7. Bandyopadhyay S. Teleportation and secret sharing with pure entangled states. Phys Rev A, 2000, 62: 012308

    Article  MathSciNet  ADS  Google Scholar 

  8. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307

    Article  ADS  Google Scholar 

  9. Cabello A. N-particle N-level singlet states: Some properties and applications. Phys Rev Lett, 2002, 89: 100402

    Article  MathSciNet  ADS  Google Scholar 

  10. Deng F G, Zhou H Y, Long G L. Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys Lett A, 2005, 337: 329–334

    Article  MATH  ADS  Google Scholar 

  11. Chen P, Deng F G, Long G L. High-dimension multiparty quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs. Chin Phys, 2006, 15: 2228–2235

    Article  ADS  Google Scholar 

  12. Song J, Zhang S. Secure quantum secret sharing based on reusable GHZ states as secure carriers. Chin Phys Lett, 2006, 23(6): 1383–1836

    Article  MathSciNet  ADS  Google Scholar 

  13. Wang X, Liu YM, Han L F, et al. Multiparty quantum secret of secure direct communication with high-dimensional quantum superdense coding. Int J Quant Inform, 2008, 6: 1155–1163

    Article  MATH  Google Scholar 

  14. Gao T, Yan F L, Li Y C. Quantum secret sharing between m-party and n-party with six states. Sci China Ser G-Phy Mech Astron, 2009, 52: 1191–1202

    Article  ADS  Google Scholar 

  15. Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with four states. Sci China Ser G-Phys Mech Astron, 2007, 50: 572–580

    Article  MATH  ADS  Google Scholar 

  16. Yang Y G, Wen Q Y, Zhu F C. An efficient quantum secret sharing protocol with orthogonal product states. Sci China Ser G-Phys Mech Astron, 2007, 50: 331–338

    Article  ADS  Google Scholar 

  17. Yang Y G, Wen Q Y. Threshold quantum secure direct communication without entanglement. Sci China Ser G-Phys Mech Astron, 2008, 51(2): 176–183

    Article  MATH  ADS  Google Scholar 

  18. Hsu L Y. Quantum secret-sharing protocol based on Grover’s algorithm. Phys Rev A, 2003, 68: 022306

    Article  ADS  Google Scholar 

  19. Wang C, Sheng Y B, Li X H, et al. Efficient entanglement purification for doubly entangled photon state. Sci China Ser E-Tech Sci, 2009, 52(12): 3464–3467

    Article  Google Scholar 

  20. Wang W Y, Wang C, Zhang G Y, et al. Arbitrarily long distance quantum communication using inspection and power insertion. Chin Sci Bull, 2009, 54(1): 158–162

    Article  Google Scholar 

  21. Wen H, Han Z F, Zhao Y B, et al. Multiple stochastic paths scheme on partiallytrusted relay quantum key distribution network. Sci China Ser F-Inf Sci, 2009, 52(1): 18–22

    Article  MATH  MathSciNet  Google Scholar 

  22. Xu FX, Chen W, Wang S, et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin Sci Bull, 2009, 54: 2991–2997

    Article  Google Scholar 

  23. Zhang X L, Ji D Y. Analysis of a kind of quantum cryptographic schemes based on secret sharing. Sci China Ser G-Phys Mech Astron, 2009, 52(9): 1313–1316

    Article  ADS  Google Scholar 

  24. Gao T, Yan F L, Li Y C, et al. Quantum secret sharing between m-party and n-party with six states. Sci China Ser G-Phys Mech Astron, 2009, 52(8): 1191–1202

    Article  ADS  Google Scholar 

  25. Yang Y G, Wen Q Y. Threshold quantum secret sharing between multiparty and multi-party. Sci China Ser G-Phys Mech Astron, 2009, 51(9): 1308–1315

    Article  ADS  Google Scholar 

  26. Yang Y G, Wen Q Y, Zhang X. Multiparty simultaneous quantum identity authentication with secret sharing. Sci China Ser G-Phys Mech Astron, 2008, 51(3): 321–327

    Article  MATH  ADS  Google Scholar 

  27. Tittel W, Zbinden H, Gisin N. Experimental demonstration of quantum secret sharing. Phys Rev A, 2001, 63: 042301

    Article  ADS  Google Scholar 

  28. Hao L, Wang C, Long G L. Experimental demonstration of a quantum secret-sharing using Grover algorithm, submitted

  29. Grover L K. Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett, 1997, 79: 325–328

    Article  ADS  Google Scholar 

  30. Grover L K. A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computation. New York: ACM Press, 1996. 212–219

    Google Scholar 

  31. Long G L. Grover algorithm with zero theoretical failure rate. Phys Rev A, 2001, 64: 022307

    Article  ADS  Google Scholar 

  32. Lo H-K, Chau H F. Is quantum bit commitment really possible? Phys Rev Lett, 1997, 78: 3410–3413; Mayers D. Unconditionally secure quantum bit commitment is impossible. Phys Rev Lett, 1997, 78: 3414–3417

    Article  ADS  Google Scholar 

  33. Lo H-K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283: 2050–2056

    Article  ADS  Google Scholar 

  34. Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Liu X S, Long G L, Tong D M, et al. General scheme for superdense coding between multiparties. Phys Rev A, 2002, 65: 022304

    Article  ADS  Google Scholar 

  36. Li C Y, Li X H, Deng F G, et al. Complete multiple round quantum dense coding with quantum logical network. Chin Sci Bull, 2007, 52(9): 1162–1165

    Article  Google Scholar 

  37. Wei D X, Yang X D, Luo J, et al. NMR experimental implementation of three-parties quantum superdense coding. Chin Sci Bull, 2004, 49(5): 423–426

    MATH  Google Scholar 

  38. Bruß D. Optimal eavesdropping in quantum cryptography with six states. Phys Rev Lett, 1998, 81: 3018–3021

    Article  ADS  Google Scholar 

  39. Chen P, Deng F G, Wang P X, et al. Measuring-basis-encrypted six-state quantum key distribution scheme. Prog Nat Sci, 2006, 16(1): 84–89

    Article  MATH  Google Scholar 

  40. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India. New York: IEEE, 1984. 175–179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuiLu Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, L., Li, J. & Long, G. Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron. 53, 491–495 (2010). https://doi.org/10.1007/s11433-010-0145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-0145-7

Keywords

Navigation