Skip to main content
Log in

Formation and strain distribution of Ni/NiO core/shell magnetic nanoparticles fabricated by pulsed laser deposition

  • Research Paper
  • Special Topic: Magnetic Materials at Nano-scale
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Nucleation and growth lead to substantial strain in nanoparticles embedded in a host matrix. The distribution of strain field plays an important role in the physical properties of nanoparticles. Magnetic Ni/NiO core/shell nanoparticles embedded in the amorphous Al2O3 matrix were fabricated by pulsed laser deposition. The results from a high-resolution transmission electron microscope also revealed that the core/shell nanoparticles consist of a single crystal Ni core with a faced-centered cubic structure (Space Group FM-3M) and polycrystalline NiO shell with a trigonal/rhombohedral structure (Space Group R-3mH). The growth strain of Ni/NiO core/shell nanoparticles embedded in the Al2O3 matrix was investigated. Finite element calculations clearly indicate that the NiO shell incurs large compressive strain. The compressive strain existing at the NiO shell area enables the shell material at the interface to adapt to the lattice parameters of Ni core. This process results in a relatively good crystallinity near the interface, which may be associated with the higher exchange coupling between the ferromagnetic Ni core and antiferromagnetic NiO shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pileni M P. Magnetic fluids: Fabrication, magnetic properties, and organization of nanocrystals. Adv Funct Mater, 2001, 11(5): 323–326

    Article  Google Scholar 

  2. LesliePelecky D L, Rieke R D. Magnetic properties of nanostructured materials. Chem Mater, 1996, 8(8): 1770–1783

    Article  Google Scholar 

  3. Néel L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terrescuites. Ann Geophys, 1949, 5: 99–136

    Google Scholar 

  4. Skumryev V, Stoyanov S, Zhang Y, et al. Beating the superparamagnetic limit with exchange bias. Nature, 2003, 423(6942): 850–853

    Article  ADS  Google Scholar 

  5. Prinz G A. Device physics—magnetoelectronics. Science, 1998, 282(5394): 1660–1663

    Article  Google Scholar 

  6. Wang S G, Kohn A, Wang C, et al. Exchange bias in epitaxial Fe/IrMn bilayers grown on MgO (001). J Phys D-Appl Phys, 2009, 42(22): 225001

    Article  ADS  Google Scholar 

  7. Yuan C L. Room temperature coercivity of Ni/NiO core/shell nanoparticles fabricated by pulsed laser deposition. J Phys Chem C, 2010, 114(5): 2124–2126

    Article  Google Scholar 

  8. Zhou Y Z, Chen J S, Tay B K, et al. Ni-NiO core-shell nanoclusters with cubic shape by nanocluster beam deposition. Appl Phys Lett, 2007, 90(4): 043111

    Article  ADS  Google Scholar 

  9. Yi J B, Ding J, Zhao Z L, et al. High coercivity and exchange coupling of Ni/NiO nanocomposite film. J Appl Phys, 2005, 97(10): 10K306

    Article  Google Scholar 

  10. Wellner A, Paillard V, Bonafos C, et al. Stress measurements of germanium nanocrystals embedded in silicon oxide. J Appl Phys, 2003, 94(9): 5639–5642

    Article  ADS  Google Scholar 

  11. Chew H G, Zheng F, Choi W K, et al. Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix. Nanotechnology 2007, 18(6): 065302

    Article  ADS  Google Scholar 

  12. Stadelmann P A. EMS-A software package for electron-diffraction analysis and HREM image simulation in materials science. Ultramicroscopy, 1987, 21(2): 131–145

    Article  Google Scholar 

  13. Hofmeister H, Dubiel M, Goj H, et al. Microstructural investigation of colloidal silver embedded in glass. J Microsc, 1995, 177: 331–336

    Article  Google Scholar 

  14. Voronkov V V, Falster R. Strain-induced transformation of amorphous spherical precipitates into platelets: Application to oxide particles in silicon. J Appl Phys, 2001, 89(11): 5965–5971

    Article  ADS  Google Scholar 

  15. Benabbas T, Androussi Y, Lefebvre A. A finite-element study of strain fields in vertically aligned InAs islands in GaAs. J Appl Phys, 1999, 86(4): 1945–1950

    Article  ADS  Google Scholar 

  16. Pei Q X, Lu C, Wang Y Y. Effect of elastic anisotropy on the elastic fields and vertical alignment of quantum dots. J Appl Phys, 2003, 93(3): 1487–1492

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CaiLei Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, C., Zhang, Q., Luo, X. et al. Formation and strain distribution of Ni/NiO core/shell magnetic nanoparticles fabricated by pulsed laser deposition. Sci. China Phys. Mech. Astron. 54, 1254–1257 (2011). https://doi.org/10.1007/s11433-011-4364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4364-3

Keywords

Navigation