Skip to main content
Log in

The development of BiFeO3-based ceramics

  • Review
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

The multiferroic properties of BiFeO3-based ceramics were improved through optimizing their sintering method and doping with certain rare earth elements in pure BiFeO3. Some methods, especially liquid-phase sintering method has largely decreased the densities of oxygen vacancies and Fe2+ in BiFeO3-based ceramics, and thus their resistivity became high enough to measure the saturated polarization and the large piezoelectric d 33 coefficient under the high electric field of >150 kV/cm. Besides, multiferroic properties were improved through the rare earth elements’ doping in pure BiFeO3. Magnetization commonly increases with the proportional increase of Nd, La, Sm and Dy contents up to ~30 %, while ferroelectric phase can transform to paraelectric phase at a certain proportion. An improved magnetoelectric coupling was often observed at ferroelectric phase with a relatively large proportion. Besides, an enhanced piezoelectric coefficient is expected in BiFeO3-based ceramics with morphotropic phase boundaries as they are already observed in thin epitaxial BiFeO3 films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang KF, Liu JM, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys 58:321–348

    Article  Google Scholar 

  2. Teague JR, Gerson R, James WJ (1970) Dielectric hysteresis in single crystal BiFeO3. Solid State Commun 8:1073–1074

    Article  Google Scholar 

  3. Feng B, Xue H, Xiong Z (2010) Structure and multiferroic properties of Y doped BiFeO3 ceramics. Chin Sci Bull 55:452–456

    Article  Google Scholar 

  4. Venevtsev YN, Gagulin VV (1994) Search, design and investigation of seignettomagnetic oxides. Ferroelectrics 162:23–31

    Article  Google Scholar 

  5. Tatarenko AS, Srinivasan G, Bichurin MI (2006) Magnetoelectric microwave phase shifter. Appl Phys Lett 88:183507

    Article  Google Scholar 

  6. Kubel F, Schmid H (1990) Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr B Struct Sci B46:698–702

    Article  Google Scholar 

  7. Smolenskii GA, Chupis IE (1982) Ferroelectromagnets. Sov Phys Usp 25:475–493

    Article  Google Scholar 

  8. Ederer C, Spladin NA (2005) Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B 71:060401

    Article  Google Scholar 

  9. Zhao T, Scholl A, Zavaliche F et al (2006) Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature 5:823–829

    Article  Google Scholar 

  10. Simoes AZ, Riccardi CS, Dos Santos ML et al (2009) Effect of annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thin films. Mater Res Bull 44:1747–1752

    Article  Google Scholar 

  11. Wang YP, Yuan GL, Chen XY et al (2006) Electrical and magnetic properties of single-phased and highly resistive ferroelectromagnet BiFeO3 ceramic. J Phys D Appl Phys 39:2019–2023

    Article  Google Scholar 

  12. Wang J, Neaton JB, Zheng H et al (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722

    Article  Google Scholar 

  13. Yun KY, Noda M, Okuyama M et al (2004) Structural and multiferroic properties of BiFeO3 thin films at room temperature. J Appl Phys 96:3399

    Article  Google Scholar 

  14. Liu XH, Xu Z, Qu SB et al (2007) Microstructure and properties of Ga modified 0.7BiFeO3–0.3BaTiO3 solid solution. Chin Sci Bull 52:2747–2752

    Article  Google Scholar 

  15. Yang SY, Zavaliche F, Mohaddes-Ardabili L et al (2005) Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl Phys Lett 87:102903

    Article  Google Scholar 

  16. Cazayous M, Malka D, Lebeugle D et al (2007) Electric field effect on BiFeO3 single crystal investigated by Raman spectroscopy. Appl Phys Lett 91:071910

    Article  Google Scholar 

  17. Ravindran P, Vidya R, Kjekshus A et al (2006) Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys Rev B 74:224412

    Article  Google Scholar 

  18. Li J, Wang J, Wuttig M et al (2004) Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitaxial-induced transitions. Appl Phys Lett 84:5261

    Article  Google Scholar 

  19. Ruette B, Zvyagin S, Pyatakov AP et al (2004) Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys Rev B 69:064114

    Article  Google Scholar 

  20. Mathe VL, Patankar KK, Patil RN et al (2004) Synthesis and dielectric properties of Bi1−x Nd x FeO3 perovskites. J Magn Magn Mater 270:380–388

    Article  Google Scholar 

  21. Kumar MM, Palkar VR, Srinivas K et al (2000) Ferroelectricity in a pure BiFeO3 ceramic. Appl Phys Lett 76:2764

    Article  Google Scholar 

  22. Wang YP, Zhou L, Zhang MF et al (2004) Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett 84:1731

    Article  Google Scholar 

  23. Yuan GL, Or SW, Wang YP et al (2006) Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid State Commun 138:76–81

    Article  Google Scholar 

  24. Yuan GL, Or SW, Liu JM et al (2006) Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−x Nd x FeO3 multiferroic ceramics. Appl Phys Lett 89:052905

    Article  Google Scholar 

  25. Chen F, Zhang QF, Li JH et al (2006) Sol–gel derived multiferroic BiFeO3 ceramics with large polarization and weak ferromagnetism. Appl Phys Lett 89:092910

    Article  Google Scholar 

  26. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  Google Scholar 

  27. Rajamathi M, Seshadri R (2002) Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Curr Opin Solid State Mater Sci 6:337–345

    Article  Google Scholar 

  28. Patil KC (1993) Advanced ceramics: combustion synthesis and properties. Bull Mater Sci 16:533–541

    Article  Google Scholar 

  29. Yuan GL, Or SW (2006) Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1−x Nd x FeO3 (x = 0–0.15) ceramics. Appl Phys Lett 88:062905

    Article  Google Scholar 

  30. Yuan GL, Or SW, Chan HLW et al (2007) Structural transformation and ferroelectric–paraelectric phase transition in Bi1−x La x FeO3 (x = 0–0.25) multiferroic ceramics. J Phys D Appl Phys 40:1196–1200

    Article  Google Scholar 

  31. Zhang ST, Pang LH, Zhang Y et al (2006) Preparation, structures, and multiferroic properties of single phase Bi1−x La x FeO3 (x = 0–0.40) ceramics. J Appl Phys 100:114108

    Article  Google Scholar 

  32. Sun C, Wang YP, Yang Y et al (2012) Multiferroic properties of Bi1−x Dy x FeO3 (x = 0–0.2) at various temperature. Mater Lett 72:160–163

    Article  Google Scholar 

  33. Sun C, Chen XM, Wang YP et al (2012) Structure and piezoelectric properties of BiFeO3 and Bi0.92Dy0.08FeO3 multiferroics at high temperature. Solid State Commun 152:1194–1198

    Article  Google Scholar 

  34. Xu J, Ye GL, Zeng M et al (2014) Structure transition and enhanced multiferroic properties of Dy-doped BiFeO3. J Alloys Compd 587:308–312

    Article  Google Scholar 

  35. Zhang XQ, Sui Y, Wang XJ (2010) Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. J Alloys Compd 507:157–161

    Article  Google Scholar 

  36. Li SZ, Huang YJ, Zhu JB et al (2007) XRD and Mossbauer investigation of phase segregation in Eu1−x Sr x FeO3. Phys B Condens Matter 393:100–104

    Article  Google Scholar 

  37. Uniyal P, Yadav KL (2009) Room temperature multiferroic properties of Eu doped BiFeO3. J Appl Phys 105:07D914

    Article  Google Scholar 

  38. Chen XM, Wang YP, Yang Y et al (2012) Structure, ferroelectricity and piezoelectricity evolutions of Bi1−x Sm x FeO3 at various temperatures. Solid State Commun 152:497–500

    Article  Google Scholar 

  39. Khomchenko VA, Paixa JA, Shvartsman VV et al (2010) Effect of Sm substitution on ferroelectric and magnetic properties of BiFeO3. Scripta Mater 62:238–241

    Article  Google Scholar 

  40. Khomchenko VA, Troyanchuk IO, Karpinsky DV et al (2012) Structural and magnetic phase transitions in Bi1−x Pr x FeO3 perovskites. J Mater Sci 47:1578–1581

    Article  Google Scholar 

  41. Uniyal P, Yadav KL (2009) Pr doped bismuth ferrite ceramics with enhanced multiferroic properties. J Phys: Condens Matter 21:405901

    Google Scholar 

  42. Pradhan SK, Roul BK (2012) Electrical behavior of high resistivity Ce-doped BiFeO3 multiferroic. Phys B Condens Matter 407:2527–2532

    Article  Google Scholar 

  43. Kumar M, Shankar S, Kotnala RK et al (2013) Evidences of magneto-electric coupling in BFO–BT solid solutions. J Alloys Compd 577:222–227

    Article  Google Scholar 

  44. Wang TH, Ding Y, Tu CS et al (2011) Structure, magnetic, and dielectric properties of (1–x)BiFeO3xBaTiO3 ceramics. J Appl Phys 109:07D907

    Google Scholar 

  45. Kumar M, Shankar S, Parkash O et al (2014) Dielectric and multiferroic properties of 0.75BiFeO3–0.25BaTiO3 solid solution. J Mater Sci: Mater Electron 25:888–896

    Google Scholar 

  46. Woodward DI, Reaney IM, Eitel RE et al (2003) Crystal and domain structure of the BiFeO3–PbTiO3 solid solution. J Appl Phys 94:3313

    Article  Google Scholar 

  47. Bhattacharjee B, Pandey D (2010) Stability of the various crystallographic phases of the multiferroic (1−x)BiFeO3xPbTiO3 system as a function of composition and temperature. J Appl Phys 107:124112

    Article  Google Scholar 

  48. Cheng JR, Li N, Cross LE (2003) Structural and dielectric properties of Ga-modified BiFeO3–PbTiO3 crystalline solutions. J Appl Phys 94:5153

    Article  Google Scholar 

  49. Amorin H, Correas C, Fernandez-Posada CM et al (2014) Multiferroism and enhancement of material properties across the morphotropic phase boundary of BiFeO3–PbTiO3. J Appl Phys 115:104104

    Article  Google Scholar 

  50. Zeches RJ, Rossell MD, Zhang JX et al (2009) A strain-driven morphotropic phase boundary in BiFeO3. Science 326:977–980

    Article  Google Scholar 

  51. Zhang JX, Xiang B, He Q et al (2011) Large field-induced strains in a lead-free piezoelectric material. Nature 6:98–102

    Google Scholar 

Download references

Acknowledgment

The work was supported by the National Basic Research Program of China (2012CB619406), the National Natural Science Foundation of China (11134004, 51177072 and 11274174) and the Fundamental Research Funds for the Central Universities (30920130111018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Yuan.

Additional information

SPECIAL TOPIC: Multiferroic Materials

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Xu, X., Yuan, G. et al. The development of BiFeO3-based ceramics. Chin. Sci. Bull. 59, 5161–5169 (2014). https://doi.org/10.1007/s11434-014-0648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0648-0

Keywords

Navigation