Skip to main content
Log in

Experimental investigation of the face stability of shallow tunnels in sand

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Various models have been proposed for the prediction of the necessary support pressure at the face of a shallow tunnel. To assess their quality, the collapse of a tunnel face was modelled with small-scale model tests at single gravity. The development of the failure mechanism and the support force at the face in dry sand were investigated. The observed displacement patterns show a negligible influence of overburden on the extent and evolution of the failure zone. The latter is significantly influenced, though, by the initial density of the sand: in dense sand a chimney-wedge-type collapse mechanism developed, which propagated towards the soil surface. Initially, loose sand did not show any discrete collapse mechanism. The necessary support force was neither influenced by the overburden nor the initial density. A comparison with quantitative predictions by several theoretical models showed that the measured necessary support pressure is overestimated by most of the models. Those by Vermeer/Ruse and Léca/Dormieux showed the best agreement to the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. As protection measure for the load cell, the experiments for C/D > 1.0 started with an initial displacement of 0.5 mm. Therefore, the curves seem shifted to the right.

References

  1. Al Hallak R, Garnier J, Léca E (2000) Experimental study of the stability of a tunnel face reinforced by bolts. In: Kusakabe O, Fujita K, Miyazaki Y (eds) Geotechnical aspects of underground construction in soft ground. Balkema, Rotterdam, pp 65–68

    Google Scholar 

  2. Anagnostou G, Kovári K (1992) Ein Beitrag zur Statik der Ortsbrust beim Hydroschildvortrieb. In: Symposium ’92, Probleme bei maschinellen Tunnelvortrieben? Gerätehersteller und Anwender berichten

  3. Anagnostou G, Kovári K (1996) Face stability conditions with earth-pressure-balanced shields. Tunn Undergr Space Technol 11(2):165–173

    Article  Google Scholar 

  4. Atkinson JH, Potts DM (1977) Stability of a shallow circular tunnel in cohesionless soil. Géotechnique 27(2):203–215

    Article  Google Scholar 

  5. Balthaus H (1988) Standsicherheit der flüssigkeitsgestützten Ortsbrust bei schildvorgetriebenen Tunneln. In: Duddeck FH (ed) Institut für Statik der Technischen Universität Braunschweig. Springer, Berlin, pp 477–492

    Google Scholar 

  6. Bolton MD (1986) The strength and dilatancy of sands. Géotechnique 36(1):65–78

    Article  Google Scholar 

  7. Bundesanstalt für Straßenwesen (BASt) (2007) ZTV-ING: Zusätzliche Technische Vertragsbedingungen und Richtlinien für Ingenieurbauten, Teil 5 Tunnelbau, Verkehrsblatt, Ausgabe 2003 und Entwurf 2007

  8. Chambon P, Corté JF (1994) Shallow tunnels in cohesionless soil: stability of tunnel face. ASCE J Geotech Eng 120(7):1148–1165

    Article  Google Scholar 

  9. Chambon P, Corté JF, Garnier J, König D (1991) Face stability of shallow tunnels in granular soils. In: Ko HY, McLean F (eds) Centrifuge 91. Balkema, Rotterdam, pp 99–105

    Google Scholar 

  10. Chambon P, Couillaud A, Munch P, Schürmann A., König D (1995) Stabilité du front de taille d’un tunnel: Étude de l’effet d’échelle, in Geo 95, p 3, cited in [54]

  11. Cornforth DH (1973) Prediction of drained strength of sands from relative density measurements. In: Evaluation of relative density and its role in geotechnical projects involving cohesionless soils (in ASTM Spec. Techn. Publ. 523). American Society for Testing and Materials, Philadelphia, pp 281–303

  12. DIN 18126 (1996) German Standard “Bestimmung der Dichte nichtbindiger Böden bei lockerster und dichtester Lagerung.” Beuth, Berlin

  13. Girmscheid G (2005) Tunnelbohrmaschinen - Vortriebsmethoden und Logistik, In: Betonkalender, Chap 1.3. Ernst & Sohn, Berlin, pp 119–256

  14. Görtler H (1975) Dimensionsanalyse. Springer, Berlin

    MATH  Google Scholar 

  15. Graf B (1984) Theoretische und experimentelle Ermittlung des Vertikaldrucks auf eingebettete Bauwerke, No. 96 in Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe

  16. Gudehus G (2001) Grundbau Taschenbuch, Teil 1: Geotechnische Grundlagen. Chap Stoffgesetze für Böden aus physikalischer Sicht. Ernst & Sohn, Berlin

    Google Scholar 

  17. Hauser C (2005) Boden-Bauwerk-Interaktion bei parallel-wandigen Verbundsystemen, No. 29 in Berichte des Lehr- und Forschungsgebiets Geotechnik der Universität Wuppertal, Shaker, Aachen

  18. Hejazi Y, Dias D, Kastner R (2008) Impact of constitutive models on the numerical analysis of underground constructions. Acta Geotech 3(4):251–258

    Article  Google Scholar 

  19. Herle I (1997) Hypoplastizität und Granulometrie einfacher Korngerüste, No. 142 in Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe

  20. Höfle R, Fillibeck J, Vogt N (2008) Time dependent deformations during tunnelling and stability of tunnel faces in fine-grained soils under groundwater. Acta Geotech 3(4):309–316

    Article  Google Scholar 

  21. Holzhäuser J. (2000) Problematik der Standsicherheit der Ortsbrust beim TBM-Vortrieb im Betriebszustand Druckluftstützung. In Beiträge anlässlich des 50. Geburtstages von Herrn Professor Dr.-Ing. Rolf Katzenbach, No. 52 in Mitteilungen des Institutes und der Versuchsanstalt für Geotechnik, Darmstadt University of Technology, pp 49–62

  22. Holzhäuser J, Raleigh PC, Seeley TR (2004) Messtechnische Überwachung des Tunnelvortriebs mit 4 EPS-TBMs beim ECIS-Projekt in Los Angeles, in Seminar “Messen in der Geotechnik 2004”, TU Braunschweig

  23. Horn M (1961) Horizontaler Erddruck auf senkrechte Abschlussflächen von Tunneln. In: Landeskonferenz der ungarischen Tiefbauindustrie (German translation by STUVA, Düsseldorf)

  24. Huang L, Xu Z, Zhou C (2009) Modeling and monitoring in a soft argillaceous shale tunnel. Acta Geotech 4(4):273–282

    Article  Google Scholar 

  25. Kamata H, Mashimo H (2003) Centrifuge model test of tunnel face reinforcement by bolting. Tunn Undergr Space Technol 18:205–212

    Article  Google Scholar 

  26. Kimura T, Mair RJ (1981) Centrifugal testing of model tunnels in soft soil. In: Proceedings of the 10th international conference on soil mechanics and foundation engineering, Stockholm, vol 1, pp 319–322

  27. Kirsch A (2009) On the face stability of shallow tunnels in sand, No. 16 in Advances in Geotechnical Engineering and Tunnelling. Logos, Berlin

    Google Scholar 

  28. Kirsch A, Kolymbas D (2005) Theoretische Untersuchung zur Ortsbruststabilität. Bautechnik 82(7):449–456

    Article  Google Scholar 

  29. Kolymbas D (2005) Tunnelling and tunnel mechanics. Springer, Berlin

    Google Scholar 

  30. Kolymbas D (2007) Geotechnik – Bodenmechanik, Grundbau und Tunnelbau, 2nd edn. Springer, Berlin

    Google Scholar 

  31. Krause T (1987) Schildvortrieb mit flüssigkeits- und erdgestützter Ortsbrust, No. 24 in Mitteilung des Instituts für Grundbau und Bodenmechanik der Technischen Universität Braunschweig

  32. Labra C, Rojek J, Oñate E, Zarate F (2008) Advances in discrete element modelling of underground excavations. Acta Geotech 3(4):317–322

    Article  Google Scholar 

  33. Laudahn A (2004) An approach to 1g modelling in geotechnical engineering with soiltron, No. 11 in Advances in Geotechnical Engineering and Tunnelling. Logos, Berlin

  34. Leca E, Dormieux L (1990) Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Géotechnique 40(4):581–606

    Article  Google Scholar 

  35. Mähr M (2005) Ground movements induced by shield tunnelling in non-cohesive soils, No. 14 in Advances in Geotechnical Engineering and Tunnelling. Logos, Berlin

    Google Scholar 

  36. Maranha J, Vieira A (2008) Influence of initial plastic anisotropy of overconsolidated clays on ground behaviour during tunnelling. Acta Geotech 3(3):259–271

    Article  Google Scholar 

  37. Mayer PM, Hartwig U, Schwab C (2003) Standsicherheitsuntersuchungen der Ortsbrust mittels Bruchkörpermodell und FEM. Bautechnik 80:452–467

    Google Scholar 

  38. Mélix P (1987) Modellversuche und Berechnungen zur Standsicherheit oberflächennaher Tunnels, No. 103 in Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe

  39. Muir Wood D (2004) Geotechnical modelling. Spon, London

    Book  Google Scholar 

  40. Nübel K (2002) Experimental and numerical investigation of shear localisation in granular material, No. 159 in Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe

  41. Nübel K, Weitbrecht V (2002) Visualization of localization in grain skeletons with particle image velocimetry. J Test Eval ASTM 30(4):322–329

    Google Scholar 

  42. Plekkenpol JW, van der Schrier JS, Hergarden HJ (2006) Shield tunnelling in saturated sand—face support pressure and soil deformations. In: Bezuijen A, van Lottum H (eds) Tunnelling: a decade of progress, GeoDelft 1995–2005. Taylor & Francis, London

    Google Scholar 

  43. Ruse NM (2004) Räumliche Betrachtung der Standsicherheit der Ortsbrust beim Tunnelvortrieb, No. 51 in Mitteilungen des Instituts für Geotechnik der Universität Stuttgart

  44. Soubra AH (2000) Kinematical approach to the face stability analysis of shallow circular tunnels. In: 8th International symposium on plasticity, British Columbia, Canada, pp 443–445

  45. Soubra AH (2000) Three-dimensional face stability analysis of shallow circular tunnels. In: International conference on geotechnical and geological engineering, Melbourne, Australia, November 19–24, pp 1–6

  46. Soubra AH, Dias D, Emeriault F, Kastner R (2008) Three-dimensional face stability analysis of circular tunnels by a kinematical approach. In: GeoCongress 2008: characterization, monitoring, and modelling of GeoSystems (GSP 179). New Orleans, pp 894–901

  47. Stallmann M (2005) Verbrüche im Tunnelbau – Ursachen und Sanierung. Diploma thesis, University of Applied Sciences Stuttgart

  48. Sterpi D, Cividini A (2004) A physical and numerical investigation on the stability of shallow tunnels in strain softening media. Rock Mech Rock Eng 37(4):277–298

    Article  Google Scholar 

  49. Stone KJL, Muir Wood D (1992) Effects of dilatancy and particle size observed in model tests on sand. Soils Found 32(4):43–57

    Google Scholar 

  50. STUVA (2001) Erarbeitung von Kriterien für den Einsatz von maschinellen Vortriebsverfahren im Tunnelbau, Auftraggeber Bundesanstalt für Straßenwesen (BASt), Tech. rep., (Studiengesellschaft für unterirdische Verkehrsanlagen e.V.)

  51. Sveen J. (2004) An introduction to MatPIV 1.6.1. Eprint no. 2, ISSN 0809-4403, Department of Mathematics, Oslo University

  52. Takano D, Otani J, Fukushige S, Natagani H (2006) Investigation of interaction behavior between soil and face bolts using X-ray CT. In: Desrues J, Viggiani G, Bèsuelle P (ed) Advances in X-ray tomography for geomaterials. ISTE Ltd., London, pp 389–395

    Chapter  Google Scholar 

  53. Tatsuoka F, Goto S, Tanaka T, Tani K, Kimura Y (1997) Particle size effects on bearing capacity of footing on granular material. In: Asaoka A, Adachi T, Oka F (eds) Deformation and progressive failure in geomechanics. Pergamon, New York, pp 133–138

  54. Technical Commitee 2 of ISSMGE – Physical Modelling in Geotechnics (2007) Catalogue of scaling laws and similitude questions in centrifuge modelling

  55. Tejchman J (2004) FE-simulations of a direct wall shear box test. Soils Found 44(4):67–81

    Google Scholar 

  56. Tejchman J, Górski J (2007) FE-investigations of a deterministic and statistical size effect in granular bodies within a mico-polar hypoplasticity. Granul Matter 9:439–453

    Article  Google Scholar 

  57. Vermeer PA, Ruse NM (2001) Die Stabilität der Tunnelortsbrust in homogenem Baugrund. Geotechnik 24(3):186–193

    Google Scholar 

  58. Vermeer PA, Ruse NM, Dong Z, Härle D (2000) Ortsbruststabilität von Tunnelbauwerken am Beispiel des Rennsteig-Tunnels. In: Tagungsband 2. TAE Kolloquium, Bauen in Boden und Fels, pp 195–202

  59. Vermeer PA, Ruse NM, Marcher T (2002) Tunnel heading stability in drained ground. Felsbau 20(6):8–18

    Google Scholar 

  60. Walz B (2006) Der 1g-Modellversuch in der Bodenmechanik – Verfahren und Anwendung, No. 40 in Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, Vorträge zum 2. Hans Lorenz Symposium

  61. Walz B (2006) Möglichkeiten und Grenzen bodenmechanischer 1g-Modellversuche. In: Rackwitz F (ed) Entwicklungen in der Bodenmechanik, Bodendynamik und Geotechnik. Springer, Berlin, pp 63–78

    Chapter  Google Scholar 

  62. White DJ, Take WA, Bolton MD (2001) A deformation measurement system for geotechnical testing based on digital imaging, close-range photogrammetry, and PIV image analysis. In: Proceedings of the 15th international conference on soil mechanics and foundation engineering, Istanbul. Balkema, Rotterdam, pp 539–542

  63. White DJ, Take WA, Bolton MD (2001) Measuring soil deformation in geotechnical models using digital images and PIV analysis. In: Proceedings of the 10th international conference on computer methods and advances in geomechanics, Tucson, Arizona. Balkema, Rotterdam, pp 997–1002

Download references

Acknowledgments

The constructive comments by the anonymous reviewers are gratefully acknowledged. This work was supported by the Tyrolean Science Foundation under contract UNI-0404/308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Kirsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsch, A. Experimental investigation of the face stability of shallow tunnels in sand. Acta Geotech. 5, 43–62 (2010). https://doi.org/10.1007/s11440-010-0110-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-010-0110-7

Keywords

Navigation