Skip to main content
Log in

A rational hypoplastic constitutive equation for anisotropic granular materials incorporating the microstructure tensor

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A rational study has been made to describe the behavior of anisotropic granular materials by a hypoplastic constitutive equation. The concept of the microstructure tensor in describing the anisotropy has been implemented to develop a general form of a hypoplastic constitutive equation for anisotropic materials. Attempt was made to present all formulations in a rational way with no additional assumption. Both inherent and induced anisotropy have been studied and the evolution of the material internal structure has been rationally defined through an evolutionary function. Since all developments are primarily mathematical, no particular form of a constitutive equation has been assumed. Verifications by some available experimental data reveal the success of the proposed developments outlined in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Private communication with Prof. Mojtaba Mahzoon, Professor in Applied Mechanics and Mathematics, School of Mechanical Engineering, Shiraz University, Shiraz, Iran (Winter, 2021), with reference to non-standard analysis invented by Abraham Robinson (1960s). Robinson and his coworkers proved that every polynomially compact linear operator on a Hilbert space has an invariant subspace (Bernstein and Robinson, 1966).

References

  1. Arthur JRF, Menzies BK (1972) Inherent anisotropy in a sand. Géotechnique 22(1):115–129. https://doi.org/10.1680/geot.1972.22.1.115

    Article  Google Scholar 

  2. Atkinson JH, Bransby PL (1978) The mechanics of soils: an introduction to critical state soil mechanics. McGraw-Hill, London

    Google Scholar 

  3. Azami A, Pietruszczak S, Guo P (2010) Bearing capacity of shallow foundations in transversely isotropic granular media. Int J Numer Anal Meth Geomech 34(8):771–793. https://doi.org/10.1002/nag.827

    Article  MATH  Google Scholar 

  4. Bauer E (1996) Calibration of a comprehensive hypoplastic model for granular materials. Soils Found 36(1):13–26. https://doi.org/10.3208/sandf.36.13

    Article  Google Scholar 

  5. Bauer E, Huang W, Wu W (2004) Investigations of shear banding in an anisotropic hypoplastic material. Int J Solids Struct 41(21):5903–5919. https://doi.org/10.1016/j.ijsolstr.2004.05.052

    Article  MATH  Google Scholar 

  6. Bauer E, Wu W, Huang W (2003) Modeling inherent and induced anisotropy in hypoplasticity. In: Bagi K (eds) Proceedings of the international workshop on quasi-static deformations of particulate materials (QuaDPM17). Budapest, Hungary, pp 43–49

  7. Beghini A, Bažant ZP, Chambon R, Niemunis A, Kolymbas D, Herle I (2004) Shear and objective stress rates in hypoplasticity by D. Kolymbas and I. Herle. author’s reply to discussion by A. Beghini and Z. P. Bazant, R. Chambon and A. Niemunis of ‘shear and objective stress rates in hypoplasticity’. Int J Numer Anal Methods Geomech 28(4):365–372. https://doi.org/10.1002/nag.337

  8. Casagrande A, Carillo N (1944) Shear failure of anisotropic materials. Soil Mech Found Eng 53(6):47–58

    Google Scholar 

  9. Dafalias YF, Papadimitriou AG, Li XS (2004) Sand plasticity model accounting for inherent fabric anisotropy. J Eng Mech 130(11):1319–1333. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)

    Article  Google Scholar 

  10. Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10(2):157–165

    Article  MathSciNet  MATH  Google Scholar 

  11. Green, A. E. (1956). Hypoelasticity and Plasticity. Proceedings of the Royal Society of London. Series A, 234 (1196), 46–59. https://doi.org/10.1098/rspa.1956.0014.

  12. Gudehus G (1996) A comprehensive constitutive equation for granular materials. Soils Found 36(1):1–12. https://doi.org/10.3208/sandf.36.1

    Article  Google Scholar 

  13. Herle I, Kolymbas D (2004) Hypoplasticity for soils with low friction angles. Comput Geotech 31(5):365–373. https://doi.org/10.1016/j.compgeo.2004.04.002

    Article  Google Scholar 

  14. Inglis D, Pietruszczak S (2003) Characterization of anisotropy in porous media by means of linear intercept measurements. Int J Solids Struct 40(5):1243–1264. https://doi.org/10.1016/S0020-7683(02)00595-4

    Article  MATH  Google Scholar 

  15. Kanatani K (1984) Distribution of directional data and fabric tensors. Int J Eng Sci 22(2):149–164. https://doi.org/10.1016/0020-7225(84)90090-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolymbas D, Herle I (2003) Shear and objective stress rates in hypoplasticity. Int J Numer Anal Methods Geomech 27(9):733–744. https://doi.org/10.1002/nag.297

    Article  MATH  Google Scholar 

  17. Kolymbas D (1987) A novel constitutive law for soils. In: 2nd International conference on constitutive laws for engineering methods, vol 1. Elsevier, Tucson, pp 319–326

  18. Kolymbas D (1991) An outline of hypoplasticity. Arch Rational Mech 61(3):143–151. https://doi.org/10.1007/BF00788048

    Article  MATH  Google Scholar 

  19. Kolymbas D (2000) Introduction to hypoplasticity. A.A. Balkema, Rotterdam

  20. Lade PV, Duncan JM (1975) Elastoplastic stress–strain theory for cohesionless soils. J Geotech Eng Div 101(GT10):1037–1053. https://doi.org/10.1061/AJGEB6.0000204

    Article  Google Scholar 

  21. Li XS, Dafalias YF (2012) Anisotropic critical state theory: role of fabric. J Eng Mech ASCE. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000324

    Article  Google Scholar 

  22. Liao D, Yang ZX (2021) Non-coaxial hypoplastic model for sand with evolving fabric anisotropy including non-proportional loading. Int J Numer Anal Meth Geomech 45(16):2433–2463. https://doi.org/10.1002/nag.3272

    Article  Google Scholar 

  23. Liao D, Yang ZX (2021) Hypoplastic modeling of anisotropic sand behavior accounting for fabric evolution under monotonic and cyclic loading. Acta Geotech 16:2003–2029. https://doi.org/10.1007/s11440-020-01127-z

    Article  Google Scholar 

  24. Mašín D (2019) Tensorial hypoplastic models. In: Modelling of soil behaviour with hypoplasticity, Springer series in geomechanics and geoengineering. Springer, Cham, pp 73–85. https://doi.org/10.1007/978-3-030-03976-9_4

  25. Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three difference principal stresses. Proc Jpn Soc Civ Eng 232:59–70. https://doi.org/10.2208/jscej1969.1974.232_59

    Article  Google Scholar 

  26. Molaei H, Veiskarami M, Pietruszczak S (2021) Localization of deformation in anisotropic granular materials utilizing the microstructure tensor. Int J Geomech 21(7):66. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002015

    Article  Google Scholar 

  27. Mróz Z (1966) On the forms of constitutive laws for elastic–plastic solids. Archiwum Mechaniki Stosowanej 18:1–34

    MathSciNet  MATH  Google Scholar 

  28. Mróz Z (1969) An attempt to describe the behavior of metals under cyclic loads using a more general workhardening model. Acta Mech 7(2–3):199–212. https://doi.org/10.1007/BF01176668

    Article  Google Scholar 

  29. Mróz Z (1980) On hypoelasticity and plasticity approaches to constitutive modelling of inelastic behaviour of soils. Int J Numer Anal Methods Geomech 4(1):45–55. https://doi.org/10.1002/nag.1610040104

    Article  MathSciNet  MATH  Google Scholar 

  30. Mróz Z, Norris VA, Zienkiewicz OC (1978) An anisotropic hardening model for soils and its application to cyclic loading. Int J Numer Anal Methods Geomech 2(3):203–223. https://doi.org/10.1002/nag.1610020303

    Article  MATH  Google Scholar 

  31. Mróz Z, Norris VA, Zienkiewicz OC (1979) Application of an anisotropic hardening model in the analysis of elastoplastic deformation of soils. Geotechnique 29(1):1–34. https://doi.org/10.1680/geot.1979.29.1.1

    Article  Google Scholar 

  32. Niemunis A (2003) Anisotropic effects in hypoplasticity. In: Proceedings of the international symposium on deformation characteristics of geomaterials, vol 1. Lyon, France, pp 1211–1217. https://doi.org/10.1201/NOE9058096043.ch153

  33. Niemunis A, Grandas-Tavera CE, Prada-Sarmiento LF (2009) Anisotropic visco-hypoplasticity. Acta Geotech 4:293–314. https://doi.org/10.1007/s11440-009-0106-3

    Article  Google Scholar 

  34. Noll W (1955) On the continuity of the solid and fluid states. Ph. D. Dissertation, Indiana University, Under Supervision of Clifford Ambrose Truesdell

  35. Oboudi M (2014) Characterization of inherent and induced anisotropy in granular maretirals, Ph.D. Dissertation (Supervised by S. Pietruszczak and A. G. Razaqpur), McMaster University, Hamilton, ON, Canada

  36. Oboudi M, Pietruszczak S, Razaqpur G (2016) Description of inherent and induced anisotropy in granular media with particles of high sphericity. Int J Geomech 16(4):04016006. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000635

    Article  Google Scholar 

  37. Oda M (1972) Initial fabrics and their relations to mechanical properties of granular material. Soils Found 12(1):18–36. https://doi.org/10.3208/sandf1960.12.17

    Article  MathSciNet  Google Scholar 

  38. Oda M (1993) Inherent and induced anisotropy in plasticity theory of granular soils. Mech Mater 16(1):35–45. https://doi.org/10.1016/0167-6636(93)90025-M

    Article  Google Scholar 

  39. Osinov VA, Wu W (2006) Simple shear in sand with an anisotropic hypoplastic model. Geomech Geoeng Int J 1(1):43–50. https://doi.org/10.1080/17486020600552355

    Article  Google Scholar 

  40. Petalas AL, Dafalias YF, Papadimitriou AG (2020) SANISAND-F: sand constitutive model with evolving fabric anisotropy. Int J Solids Struct 188–189:12–31. https://doi.org/10.1016/j.ijsolstr.2019.09.005

    Article  Google Scholar 

  41. Pietruszczak S (2010) Fundamental of plasticity in geomechanics. CRC Press/Taylor and Francis Group, NY

    MATH  Google Scholar 

  42. Pietruszczak S, Haghighat E (2015) Modeling of deformation and localized failure in anisotropic rocks. Int J Solids Struct 67:93–101. https://doi.org/10.1016/j.ijsolstr.2015.04.004

    Article  Google Scholar 

  43. Pietruszczak S, Krucinski S (1989) Considerations on soil response to the rotation of principal stress directions. Comput Geotech 8(2):89–110. https://doi.org/10.1016/0266-352X(89)90059-1

    Article  Google Scholar 

  44. Pietruszczak S, Krucinski S (1989) Description of anisotropic response of clays using a tensorial measure of structural disorder. Mech Mater 8(2):237–249. https://doi.org/10.1016/0167-6636(89)90014-8

    Article  Google Scholar 

  45. Pietruszczak S, Mróz Z (2000) Formulation of anisotropic failure criteria incorporating a microstructure tensor. Comput Geotech 26(2):105–112. https://doi.org/10.1016/S0266-352X(99)00034-8

    Article  Google Scholar 

  46. Pietruszczak S, Oboudi M (2017) Description of induced anisotropy in microstructure of granular soils. Soils Found 57(4):512–526. https://doi.org/10.1016/j.sandf.2017.06.003

    Article  Google Scholar 

  47. Pietruszczak S, Pakdel P (2022) On the mechanical anisotropy of argillaceous cobourg limestone: fabric tensor approach. Int J Rock Mech Min Sci 150:104953. https://doi.org/10.1016/j.ijrmms.2021.104953

    Article  Google Scholar 

  48. Pietruszczak S, Mróz Z (2001) On failure criteria for anisotropic cohesive-frictional materials. Int J Numer Anal Methods Geomech 25(5):509–524. https://doi.org/10.1002/nag.141

    Article  MATH  Google Scholar 

  49. Schofield AN, Wroth CP (1968) Critical state soil mechanics. McGraw-Hill, New York

    Google Scholar 

  50. Seyhan U, Tutumluer E (2002) Anisotropic modular ratios as unbound aggregate performance indicators. J Mater Civil Eng 14(5):409–416. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:5(409)

    Article  Google Scholar 

  51. Tejchman J, Bauer E, Wu W (2007) Effect of fabric anisotropy on shear localization in sand during plane strain compression. Acta Mech 189(1–4):23–51. https://doi.org/10.1007/s00707-006-0416-6

    Article  MATH  Google Scholar 

  52. Truesdell CA (1955) Hypo-elasticity. J Rational Mech Anal 4:83–133

    MathSciNet  MATH  Google Scholar 

  53. Truesdell CA, Noll W (1965) The nonlinear field theories of mechanics. In: Encyclopedia of physics III/I (Ed. Flügge, S.). Springer, Berlin

  54. Wang R, Cao W, Xue L, Zhang J-M (2021) An anisotropic plasticity model incorporating fabric evolution for monotonic and cyclic behavior of sand. Acta Geotech 16:43–45. https://doi.org/10.1007/s11440-020-00984-y

    Article  Google Scholar 

  55. Wu W (1998) Rational approach to anisotropy of sand. Int J Numer Anal Meth Geomech 22(11):921–940. https://doi.org/10.1002/(sici)1096-9853(1998110)22:11%3c921::aid-nag948%3e3.0.co;2-j

    Article  MATH  Google Scholar 

  56. Wu W (2006) On high-order hypoplastic models for granula materials. J Eng Math 56:23–34. https://doi.org/10.1007/s10665-006-9040-7

    Article  MATH  Google Scholar 

  57. Wu W, Bauer E (1994) A simple hypoplastic constitutive model for sand. Int J Numer Anal Methods Geomech 18(12):833–862. https://doi.org/10.1002/nag.1610181203

    Article  MATH  Google Scholar 

  58. Wu W, Kolymbas D (1990) Numerical testing of the stability criterion for hypoplastic constitutive equations. Mech Mater 9(3):245–253. https://doi.org/10.1016/0167-6636(90)90006-2

    Article  Google Scholar 

  59. Wu W, Ling J, Wang X (2017) A basic hypoplastic constitutive model for sand. Acta Geotech 12(6):1373–1382. https://doi.org/10.1007/s1144

    Article  Google Scholar 

  60. Xu G, Wu W, Kong L, Qi J (2018) Hypoplastic modeling for the mechanical behavior of frozen soil in stress path testing. Int J Geomech 18(6):04018049. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001117

    Article  Google Scholar 

  61. Yang L-T, Li X, Yu HS, Wanatowski D (2016) A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding. Acta Geotech 11:1111–1129. https://doi.org/10.1007/s11440-015-0423-7

    Article  Google Scholar 

  62. Yang ZX, Liao D, Xu TT (2020) A hypoplastic model for granular soils incorporating anisotropic critical state theory. Int J Numer Anal Methods Geomech 44(6):723–748. https://doi.org/10.1002/nag.3025

    Article  Google Scholar 

  63. Yu H-S (2006) Plasticity and geotechnics. Springer, New York

    MATH  Google Scholar 

  64. Zamanian M, Payan M, Jafarzadeh F, Ranjbar N, Senetakis K (2021) Evolution of dynamic properties of cross-anisotropic sand subjected to stress anisotropy. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002541

    Article  Google Scholar 

  65. Zhang Y, Luo R, Lytton RL (2011) Microstructure-based inherent anisotropy of asphalt mixtures. J Mater Civ Eng 23(10):1473–1482. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000325

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to draw their appreciations to Professor Stanislaw Pietruszczak (Professor in Engineering Mechanics and Geomechanics, John Hodgins School of Engineering, McMaster University, Canada) for his great scientific support of this work. The basic idea in implementing the microstructure tensor to describe anisotropy is attributed to his seminal works (with Prof. Zenon Mróz of course) since 1980s to date. Many parts of this work have been communicated to him and with no doubt, it could not be accomplished without his fundamental contribution and very helpful guidelines.

In addition, the first author would like to draw his appreciation to Prof. Mojtaba Mahzoon (Professor in Applied Mechanics and Mathematics, School of Mechanical Engineering, Shiraz University, Iran) for fundamental comments on those elements related to continuum mechanics and mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Veiskarami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 771 kb)

Appendices

Appendix 1: Equivalent limit state equations for hypoplastic anisotropic materials based on common yield criteria in classical plasticity theory

By making use of the scalar anisotropic parameter, η [41, 45, 48]:

$$\eta = 3\frac{{{\text{tr}}\left( {{\varvec{T}}^{2} {\mathbf{\mathfrak{F}}}} \right)}}{{{\text{tr}}\left( {{\varvec{T}}^{2} } \right)}} = 3\frac{{t_{im} t_{jn} {\mathfrak{F}}_{mn} }}{{t_{pq} t_{pq} }}$$
(43)

The following yield criteria for anisotropic granular materials and their equivalent limit state surfaces in hypoplasticity can be defined.

1.1 Anisotropic form of the Drucker and Prager [10] yield criterion

$$f\left( {I_{1} ,J_{2} } \right) = \sqrt {\left| {J_{2} } \right|} - \eta kI_{1} - \beta = 0$$
(44)

In this equation \(I_{1} = {\text{tr}}{\varvec{T}}\) and \(J_{2} = \frac{1}{2}\left[ {\left( {{\text{tr}}{\varvec{S}}} \right)^{2} - {\text{tr}}{\varvec{S}}^{2} } \right] = - \frac{1}{2}{\varvec{S}}{:}{\varvec{S}}\). Therefore:

$$f\left( {I_{1} ,J_{2} } \right) = \frac{1}{\sqrt 2 }\sqrt {{\varvec{S}}{:}{\varvec{S}}} - \eta k{\text{tr}}{\varvec{T}} - \beta = 0$$
(45)
$$f\left( {I_{1} ,J_{2} } \right) = {\varvec{S}}{:}{\varvec{S}} = 2\left( {\eta k{\text{tr}}{\varvec{T}} + \beta } \right)^{2} = 2\eta^{2} k^{2} \left( {{\text{tr}}{\varvec{T}}} \right)^{2} + 2\beta^{2} + 4\beta \eta k{\text{tr}}{\varvec{T}}$$
(46)

In case of sand with no cohesion, i.e., β = 0, we have:

$$f\left( {I_{1} ,J_{2} } \right) = {\varvec{S}}{:}{\varvec{S}} = 2\eta^{2} k^{2} \left( {{\text{tr}}{\varvec{T}}} \right)^{2}$$
(47)
$$f\left( {I_{1} ,J_{2} } \right) = \hat{\user2{S}}{:}\hat{\user2{S}} = 2\eta^{2} k^{2} = \alpha^{2}$$
(48)

which is identical to the previous one obtained by hypoplasticity.

1.2 Anisotropic form of the Matsuoka and Nakai [25] yield criterion

$$I_{1} I_{2} - \eta kI_{3} = 0$$
(49)

where

$$\hat{I}_{1} \hat{I}_{2} - \eta k\hat{I}_{3} = 0,\quad \hat{I}_{1} = \frac{{{\text{tr}}\left( {\varvec{T}} \right)}}{{{\text{tr}}\left( {\varvec{T}} \right)}} = 1,\quad \hat{I}_{2} = \frac{1}{2}\left[ {\left( {{\text{tr}}\hat{\user2{T}}} \right)^{2} - {\text{tr}}\left( {\hat{\user2{T}}^{2} } \right)} \right] = \eta k\det \hat{\user2{T}},\quad \hat{\user2{T}}{:}\hat{\user2{T}} = 1 - 2\eta k\det \hat{\user2{T}}$$
(50)

Therefore:

$${\varvec{T}}{:}{\varvec{T}} - \left( {{\text{tr}}{\varvec{T}}} \right)^{2} g\left( {\alpha^{2} } \right) = 0, \hat{\user2{T}}{:}\hat{\user2{T}} - g\left( {\alpha^{2} } \right) = 0$$
(51)
$$g\left( {\alpha^{2} } \right) = \alpha^{2} + \frac{1}{3} = 1 - 2\eta k\det \hat{\user2{T}}, \alpha^{2} = \frac{2}{3} - 2\eta k\det \hat{\user2{T}}$$
(52)

which gives the final form for α. The same proof can be provided for the Lade–Duncan yield criterion.

Appendix 2: Fabric tensor for special case of transversely isotropic materials

For transversely isotropic materials (Ω2 = Ω3), the fabric tensor (or the microstructure tensor), \({\mathbf{\mathfrak{F}}}\) (or equivalently, Ω) can be found as follows. Reminding that Ω is a traceless tensor, it can be fully prescribed by only one of its entries:

$$\Omega_{2} = \Omega_{3} ,\quad \Omega_{1} + \Omega_{2} + \Omega_{3} = 0,\quad \Omega_{2} = \Omega_{3} = - \Omega_{1} /2$$
(53)

If T and \({\mathbf{\mathfrak{F}}}\) (or Ω) are coaxial, i.e., possessing the same eigenvectors, then:

$$\eta = 3\frac{{{\text{tr}}\left( {{\varvec{T}}^{2} {\mathbf{\mathfrak{F}}}} \right)}}{{{\text{tr}}\left( {{\varvec{T}}^{2} } \right)}} = 3\frac{{t_{im} t_{in} {\mathfrak{F}}_{mn} }}{{t_{mn} t_{mn} }} = \frac{{t_{im} t_{in} \left( {\delta_{mn} + \Omega_{mn} } \right)}}{{t_{mn} t_{mn} }} = \frac{{t_{mn} t_{mn} + t_{im} t_{in} \Omega_{mn} }}{{t_{mn} t_{mn} }} = 1 + \frac{{t_{im} t_{in} \Omega_{mn} }}{{t_{mn} t_{mn} }}$$
(54)

Without loss of generality, we can assume that the global coordinates system is the same as the principal stress direction, i.e., θ = 90°. Therefore, three special cases can be inspected which are very useful in standard triaxial compression:

Case (i) β = 0 (bedding planes parallel to x2x3 plane)

$$\eta = 1 + \frac{{\sigma_{1}^{2} \Omega_{1} + 2\sigma_{3}^{2} \Omega_{3} }}{{\sigma_{1}^{2} + 2\sigma_{3}^{2} }} = 1 + \frac{{\sigma_{1}^{2} - \sigma_{3}^{2} }}{{\sigma_{1}^{2} + 2\sigma_{3}^{2} }}\Omega_{1}$$
(55)

Case (ii) β = 90° (bedding planes parallel to x1x2 plane)

$$\eta = 1 + \frac{{\sigma_{1}^{2} \Omega_{3} + \sigma_{3}^{2} \left( {\Omega_{1} + \Omega_{3} } \right)}}{{\sigma_{1}^{2} + 2\sigma_{3}^{2} }} = 1 - \frac{{\sigma_{1}^{2} - \sigma_{3}^{2} }}{{2\left( {\sigma_{1}^{2} + 2\sigma_{3}^{2} } \right)}}\Omega_{1}$$
(56)

Case (iii) β arbitrary

$${{\varvec{\Omega}}}^{{\prime }} = {\varvec{A}}^{{\text{T}}} {{\varvec{\Omega}}}{\varvec{A}},\quad \Omega_{mn}^{{\prime }} = a_{im} a_{jn} \Omega_{ij}$$
(57)

where aij are cosines of the subtended angles between xi and \(x_{j}^{\prime }\):

$$\begin{aligned} a_{11} & = \cos \beta ,\quad a_{22} = 1,\quad a_{33} = \cos \beta ,\quad a_{12} = a_{21} = 1, \\ a_{13} & = - a_{31} = - \sin \beta ,\quad a_{23} = a_{32} = 0 \\ \end{aligned}$$
(58a)
$$\begin{aligned} & \varvec{A} = \left( {\begin{array}{ccc} {\cos \beta } & 0 & { - \sin \beta } \\ 0 & 1 & 0 \\ { + \sin \beta } & 0 & {\cos \beta } \\ \end{array} } \right),~ \\ \\ & {\varvec{\Omega }}^{{\prime }} = \left( {\begin{array}{cc} {\Omega _{1} \cos ^{2} \beta + \Omega _{3} \sin ^{2} \beta } & 0 \\ 0 & {\Omega _{2} = \Omega _{3} } \\ {\left( { - \Omega _{1} + \Omega _{3} } \right)\sin \beta \cos \beta } & 0 \\ \end{array} } \right. \\ \\ & \quad\quad \quad \quad \left. \begin{array}{c} \left( - \Omega _{1} + \Omega _{3} \right)\sin \beta \cos \beta \\ 0 \\ \Omega _{1} \sin ^{2} \beta + \Omega _{3} \cos ^{2} \beta \\ \end{array} \right), \\ \end{aligned}$$
(58b)

Equivalently:

$${{\varvec{\Omega}}}^{{\prime }} = \left( {\begin{array}{*{20}c} {\Omega_{11}^{{\prime }} } & 0 & {\Omega_{13}^{{\prime }} } \\ {} & {\Omega_{22}^{{\prime }} } & 0 \\ {{\text{sym}}.} & {} & {\Omega_{33}^{{\prime }} } \\ \end{array} } \right),\quad \Omega_{11}^{{\prime }} + \Omega_{22}^{{\prime }} + \Omega_{33}^{{\prime }} = 0, \beta {:}\,{\text{given}},\,{\text{fixed}},\quad {\text{tr}}{{\varvec{\Omega}}}^{{\prime }} = 0$$
(59)

Therefore, having known β only one independent component of Ω is left to be found. Thus, by conducting at least two standard triaxial compression tests, a single paramer limit state function together with the fabric tensor, \({\mathbf{\mathfrak{F}}}\) (or equivalently, Ω) can be found.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veiskarami, M., Azar, E. & Habibagahi, G. A rational hypoplastic constitutive equation for anisotropic granular materials incorporating the microstructure tensor. Acta Geotech. 18, 1233–1253 (2023). https://doi.org/10.1007/s11440-022-01661-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01661-y

Keywords

Navigation