Skip to main content
Log in

Convergence-confinement analysis for tunnels with combined bolt–cable system considering the effects of intermediate principal stress

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The mechanical responses of tunnels reinforced by combined bolt–cable system are investigated in this paper. An analytical model of the convergence-confinement type is proposed that accounts for the sequential installation of finite-length fully grouted bolts and cables, as well as the effects of intermediate principal stress. The rock mass is assumed to be strain-softening material, obeying the unified strength theory or the Drucker–Prager criterion. The analytical model is divided into three stages including before bolt installation, bolt–rock interaction and after cable installation, of which the latter two stages are the focus of this study. According to the distribution and extent of the plastic zone and the relative bolt–cable lengths, six forms during the bolt–rock interaction and ten forms after cable installation are categorized and solved. Using the critical support pressures for the transitions of different forms, the modified whole-process ground reaction curve is obtained and validated by 2D numerical simulations and an existing model. Furthermore, the fictitious pressure is introduced to quantify the three-dimensional space effect of the tunnel face, whose solution is given by combining the proposed ground reaction curve and the longitudinal displacement profile proposed by Hoek. By using the strain compatibility conditions of bolts, cables and rock, the longitudinal tunnel displacement, stresses and plastic radii considering the sequential installation of bolts and cables are obtained. The results of the proposed model agree well with the 3D numerical simulations. Parametric analyses are conducted to investigate the effect of intermediate principal stress on the tunnel responses by different criteria. The proposed model provides a convenient alternative tool for the combined bolt–cable design of tunnels at the preliminary stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Alejano LR, Alonso E, Rodríguez-Dono A, Fernández-Manín G (2010) Application of the convergence-confinement method to tunnels in rock masses exhibiting Hoek-Brown strain-softening behaviour. Int J Rock Mech Min Sci 47(1):150–160

    Article  Google Scholar 

  2. Bischoff JA, Smart JD. 1975 A method of computing rock reinforcement system which is structurally equivalent to an internal support system. In: Proceedings of the 16th symposium on rock mechanics. University of minnesota, pp 179–184.

  3. Bobet A, Einstein HH (2011) Tunnel reinforcement with rockbolts. Tunn Undergr Space Technol 26:100–123

    Article  Google Scholar 

  4. Brown ET, Bray JW, Ladanyi B, Hoek E (1983) Ground response curves for rock tunnels. J Geotech Eng 109:15–39

    Article  Google Scholar 

  5. Cai M (2008) Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries-insight from numerical modeling. Int J Rock Mech Min Sci 45(5):763–772

    Article  Google Scholar 

  6. Cai Y, Jiang YJ, Djamaluddin I, Iura T, Esaki T (2015) An analytical model considering interaction behavior of grouted rock bolts for convergence-confinement method in tunneling design. Int J Rock Mech Min Sci 76:112–126

    Article  Google Scholar 

  7. Carranza-Torres C (2009) Analytical and numerical study of the mechanics of rockbolt reinforcement around tunnels in rock masses. Rock Mech Rock Eng 42(2):175–228

    Article  Google Scholar 

  8. Carranza-Torres C, Fairhurst C (2000) Application of convergence–confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion. Tunn Undergr Space Technol 15(2):187–213

    Article  Google Scholar 

  9. Carranza-Torres C, Rysdahl B, Kasim M (2013) On the elastic analysis of a circular lined tunnel considering the delayed installation of the support. Int J Rock Mech Min Sci 61(10):57–85

    Article  Google Scholar 

  10. Chen SL, Abousleiman YN (2012) Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam Clay soil. Geotechnique 62(5):447–456

    Article  Google Scholar 

  11. Deng LS, Fan W, Yu MH (2018) Parametric study of a loess slope based on unified strength theory. Eng Geol 233:98–110

    Article  Google Scholar 

  12. Deng CJ, He GJ, Zheng YR (2006) Studies on Drucker-Prager yield criterions based on M-C yield criterion and application in geotechnical engineering. Chin J Geotech Eng 28(6):735–739 ((in Chinese))

    Google Scholar 

  13. Fahimifar A, Ranjbarnia M (2009) Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence-confinement method. Tunn Undergr Space Technol 24(4):363–375

    Article  Google Scholar 

  14. Fang Q, Zhang DL, Zhou P, Wong LNY (2013) Ground reaction curves for deep circular tunnels considering the effect of ground reinforcement. Int J Rock Mech Min Sci 60:401–412

    Article  Google Scholar 

  15. Goel MD, Verma S, Mandal J, Panchal S (2021) Effect of blast inside tunnel on surrounding soil mass, tunnel lining, and superstructure for varying shapes of tunnels. Undergr Space 6(6):619–635

    Article  Google Scholar 

  16. Grasso PG, Mahtab A, Pelizza S (1989) Riqualificazione della massa roccoisa: un criterio per la atabilizzaazione della gallerie. Gallerie e Grandi Opere Sotterranee 29:35–41

    Google Scholar 

  17. Guan K, Zhu WC, Wei J, Liu XG, Niu LL, Wang XR (2018) A finite strain numerical procedure for a circular tunnel in strain-softening rock mass with large deformation. Int J Rock Mech Min Sci 112:266–280

    Article  Google Scholar 

  18. Guan K, Zhu WC, Yu QL, Cui L, Song F (2022) A plastic-damage approach to the excavation response of a circular opening in weak rock. Tunn Undergr Space Technol 126:104538

    Article  Google Scholar 

  19. Hoek E, 1999. Personal communication.

  20. Huang ZP, Broch E, Lu M (2002) Cavern roof stability - mechanism of arching and stabilization by rockbolting. Tunn Undergr Space Technol 17:249–261

    Article  Google Scholar 

  21. Indraratna B, Kaiser PK (1990) Design for grouted rockbolts based on the convergence control method. Int J Rock Mech Min Sci 27:269–281

    Article  Google Scholar 

  22. Itasca consulting group, Inc. FLAC 3D Version 6.0. User manual. consulting group, Inc., Minneapolis. 2017.

  23. Jiang Q, Feng XT, Cui J, Li SJ (2014) Failure mechanism of unbounded prestressed thru-anchor cables: In situ investigation in large underground caverns. Rock Mech Rock Eng 48:873–878

    Article  Google Scholar 

  24. Kang HP (2014) Support technologies for deep and complex roadways in underground coal mines: A review. Int J Coal Sci Technol 1:261–277

    Article  Google Scholar 

  25. Kang HP, Jian L, Wu YZ (2009) Development of high pretensioned and intensive supporting system and its application in coal mine roadways. Procedia Earth Planetary Sci 1(1):479–485

    Article  Google Scholar 

  26. Kang HP, Lin J, Fan MJ (2015) Investigation on support pattern of a coal mine roadway within soft rocks - a case study. Int J Coal Geol 140:31–40

    Article  Google Scholar 

  27. Labiouse V (1996) Ground response curves for rock excavations supported by ungrouted tensioned rockbolts. Rock Mech Rock Eng 29(1):19–38

    Article  Google Scholar 

  28. Li PF, Wang F, Fang Q (2018) Undrained analysis of ground reaction curves for deep tunnels in saturated ground considering the effect of ground reinforcement. Tunn Undergr Space Technol 71:579–590

    Article  Google Scholar 

  29. Liu DP, Zhang DL, Fang Q, Sun ZY, Li A (2020) Field monitoring of the deformation and internal forces of the surrounding rock and support structures in the construction of a super-span high-speed railway tunnel-a case study. Appl Sci 10(15):5182

    Article  Google Scholar 

  30. Liu DJ, Zuo JP, Wang J, Zhang TL, Li HY (2020) Large deformation mechanism and concrete-filled steel tubular support control technology of soft rock roadway-a case study. Eng Fail Anal 116:104721

    Article  Google Scholar 

  31. Luo JW, Zhang DL, Fang Q, Li A, Sun ZY, Cao LQ (2020) Analytical study on pretensioned bolt-cable combined support of large cross-section tunnel. Sci China Technol Sci 63(9):1808–1823

    Article  Google Scholar 

  32. Oreste pp (2003) Analysis of structural interaction in tunnels using the convergence-confinement approach. Tunn Undergr Space Technol 18:347–363

    Article  Google Scholar 

  33. Oreste PP, Peila D (1997) Modelling progressive hardening of shotcrete in convergence-confinement approach to tunnel design. Tunn Undergr Space Technol 12(3):425–431

    Article  Google Scholar 

  34. Osgoui RR, Oreste pp (2007) Convergence-control approach for rock tunnels reinforced by grouted bolts, using the homogenization concept. Geotech Geol Eng 25(4):431–440

    Article  Google Scholar 

  35. Sandrone F, Labiouse V (2010) Analysis of the evolution of road tunnels equilibrium conditions with a convergence- confinement approach. Rock Mech Rock Eng 43(2):201–218

    Article  Google Scholar 

  36. Shi PX, Zhang DL, Pan JL, Liu W (2016) Geological investigation and tunnel excavation aspects of the weakness zones of Xiang’an subsea tunnels in China. Rock Mech Rock Eng 49(12):4853–4867

    Article  Google Scholar 

  37. Song KI, Cho GC, Chang SB, Lee IM (2013) Beam-spring structural analysis for the design of a tunnel pre-reinforcement support system. Int J Rock Mech Min Sci 59:139–150

    Article  Google Scholar 

  38. Sui Y, Cheng XH, Wei JX (2021) Distributed fibre optic monitoring of damaged lining in double-arch tunnel and analysis of its deformation mode. Tunn Undergr Space Technol 110:103812

    Article  Google Scholar 

  39. Sun ZY, Zhang DL, Fang Q. The synergistic effect and design method of tunnel anchorage system. Eng. Mech. 2019; 36(5): 53–66, 75 (in Chinese).

  40. Sun ZY, Zhang DL, Fang Q, Dui GS, Chu ZF (2022) Analytical solutions for deep tunnels in strain-softening rocks modeled by different elastic strain definitions with the unified strength theory. Sci China Tech Sci 65:1–17

    Article  Google Scholar 

  41. Sun ZY, Zhang DL, Fang Q, Dui GS, Tai QM, Sun FW (2021) Analysis of the interaction between tunnel support and surrounding rock considering pre-reinforcement. Tunn Undergr Space Technol 115:104074

    Article  Google Scholar 

  42. Sun ZY, Zhang DL, Fang Q, Liu DP, Dui GS (2021) Displacement process analysis of deep tunnels with grouted rockbolts considering bolt installation time and bolt length. Comput Geotech 140:104437

    Article  Google Scholar 

  43. Sun ZY, Zhang DL, Fang Q, Tai QM, Yu FC (2017) Spatial and temporal evolution characteristics of interaction between primary support and tunnel surrounding rock. Chin J Rock Mech Eng 36(S2):3943–3956 ((in Chinese))

    Google Scholar 

  44. Sun ZY, Zhang DL, Li A, Lu S, Tai QM, Chu ZF (2022) Model test and numerical analysis for the face failure mechanism of large cross-section tunnels under different ground conditions. Tunn Undergr Space Technol 130:104735

  45. Tao ZG, Cao JD, Yang L, Guo AP, Huang RF, Yang XJ, Yuan D, Hou L (2020) Study on deformation mechanism and support measures of soft surrounding rock in Muzhailing deep tunnel. Adv Civ Eng 2:1–14

    Google Scholar 

  46. Windsor CR, Thompson AG (1993) Rock reinforcement - technology, testing, design and evaluation. In: Hudson JA (ed) Comprehensive Rock Engineering, Principles, Practice & Projects, vol 4. UK, Pergamon Press, Oxford, pp 451–484

    Google Scholar 

  47. Wong LNY, Fang Q, Zhang DL (2013) Mechanical analysis of circular tunnels supported by steel sets embedded in primary linings. Tunn Undergr Space Technol 37:80–88

    Article  Google Scholar 

  48. Wu XZ, Jiang YJ, Guan ZC, Wang G (2018) Estimating the support effect of energy-absorbing rock bolts based on the mechanical work transfer ability. Int J Rock Mech Min Sci 103:168–178

    Article  Google Scholar 

  49. Wu K, Shao Z, Sharifzadeh M, Hong S, Qin S (2022) Analytical computation of support characteristic curve for circumferential yielding lining in tunnel design. J Rock Mech Geotech Eng 14(1):144–152

    Article  Google Scholar 

  50. Wu GS, Yu WJ, Zuo JP, Du SH (2020) Experimental and theoretical investigation on mechanisms performance of the rock-coal-bolt (RCB) composite system. Int J Min Sci Technol 30(06):18–27

    Article  Google Scholar 

  51. Yu MH, Zan YW, Zhao J, Yoshimine M (2002) A unified strength criterion for rock material. Int J Rock Mech Min Sci 39:975–989

    Article  Google Scholar 

  52. Zhang DL (2017) Essential issues and their research progress in tunnel and underground engineering. Chin J Theor Appl Mech 49(1):3–21 ((in Chinese))

    Google Scholar 

  53. Zhang DL, Sun ZY, Fang Q (2021) Scientific problems and research proposals for Sichuan-Tibet railway tunnel construction. Undergr space 7(3):419–439

    Article  Google Scholar 

  54. Zhang CG, Zhao JH, Zhang QH, Hu XD (2012) A new closed-form solution for circular openings modeled by the unified strength theory and radius-dependent Young’s modulus. Comput Geotech 42:118–128

    Article  Google Scholar 

  55. Zhao K, Chen WZ, Yang DS, Zhao WS, Wang SY, Song WP (2019) Mechanical tests and engineering applicability of fibre plastic concrete used in tunnel design in active fault zones. Tunn Undergr Space Technol 88:200–208

    Article  Google Scholar 

  56. Zhao CF, Wang YB, Fei Y (2020) Analysis of drained cavity unloading-contraction considering different degrees of intermediate principal stress with unified strength theory. Int J Geomech 20(7):04020086

    Article  Google Scholar 

  57. Zhu JG, Peng K, Shao JF, Liu HL (2012) Improved slope safety analysis by new Druker-Prager type criterion. J Cent South Univ 19:1132–1137

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52208382, 52278387, 51738002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingli Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Solutions for the GRCs of bolt-supported tunnels

The elastic modulus of bolt-reinforced zone is set as \(E_{g}\). The circumferential space, longitudinal space and uniform length of bolts are set as \(S_{cb}\), \(S_{lb}\) and \(L_{b}\). The elastic modulus, cross-sectional area and pretension load of a single bolt are set as \(E_{b}\), \(A_{b}\) and \(F_{b}\), respectively.

A.1 The solution for Form A1

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ u_{r} \left| {_{{r = r_{b} - dr}} } \right. = u_{r} \left| {_{{r = r_{b} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(36)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{1 + \mu }{{\alpha E_{g} }}r_{0} \left[ {\left( {1 - 2\mu } \right)\left( {p_{{r_{b} }} r_{b}^{2} - p_{i} r_{0}^{2} } \right) - \left( {p_{i} - p_{{r_{b} }} } \right)r_{b}^{2} } \right] $$
(37)

where \(p_{{r_{b} }}\) is the radial stress at the interface of the bolt-reinforced zone and the natural zone (\(r = r_{b}\)), which can be obtained by

$$ p_{{r_{b} }} = \frac{{2\left[ {E\left( {1 - \mu } \right)p_{i} r_{0}^{2} + \alpha E_{g} \left( {1 - \mu } \right)p_{0} } \right]}}{{\alpha E_{g} + E\left[ {\left( {1 - 2\mu } \right)r_{b}^{2} + r_{0}^{2} } \right]}} $$
(38)

where \(\alpha = r_{b}^{2} - r_{0}^{2}\).

A.2 The solution for Form A2

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(39)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{Dr_{0} }}{h + 1}\left[ {\left( {h - 1} \right) + 2\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{h + 1} } \right] $$
(40)

where \(D = \frac{{\left( {1 + \mu } \right)\left[ {p_{0} \left( {\xi_{0} - 1} \right) + \sigma_{p} } \right]}}{{E\left( {1 + \xi_{0} } \right)}}\).

The softening zone radius \(r_{1}\) required in Eq. (40) can be obtained from the equation:

$$ \begin{gathered} \frac{1}{{1 - \xi_{0} }}\left( {B - \sigma_{p} - \frac{{2DE^{\prime}}}{h + 1}} \right) + \left[ {p_{i} - \frac{B}{{1 - \xi_{0} }} + \frac{A}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{h + 1} } \right]\left( {\frac{{r_{b} }}{{r_{0} }}} \right)^{{\xi_{0} - 1}} \hfill \\ = \frac{2M}{{1 - \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{{1 - \xi_{0} }} + \frac{1}{{h + \xi_{0} }}\left( {A + \frac{{2DE^{\prime}}}{h + 1}} \right)\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{h + 1} \hfill \\ \end{gathered} $$
(41)

where \(A = \frac{{2Dh\xi_{0} E_{b} A_{b} - 2S_{bc} S_{lc} DE^{\prime}}}{{\left( {1 + h} \right)S_{bc} S_{lc} }}\), \(B = \sigma_{p} - A - \frac{{\xi_{0} }}{{S_{bc} S_{lc} }}\left( {DE_{b} A_{b} + F_{b} } \right)\),.\(M = \frac{{\left( {1 - \xi_{0} } \right)p_{0} - \sigma_{p} }}{{1 + \xi_{0} }} - \frac{{DE^{\prime}}}{{h + \xi_{0} }}\).

A.3 The solution for Form A3

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{b} - dr}} } \right. = u_{r} \left| {_{{r = r_{b} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(42)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{\left( {1 + \mu } \right)r_{1} }}{{E_{g} \beta }}\left\{ {\left[ {\left( {p_{{r_{b} }} - p_{{r_{1} }} } \right)r_{b}^{2} + \left( {p_{{r_{b} }} r_{b}^{2} - p_{{r_{1} }} r_{1}^{2} } \right)\left( {1 - 2\mu } \right)} \right] + \frac{{2\left( {p_{{r_{b} }} - p_{{r_{1} }} } \right)r_{b}^{2} }}{h + 1}\left[ {\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{h} - 1} \right]} \right\} $$
(43)

where \(\beta = r_{b}^{2} - r_{1}^{2}\).

The softening zone radius \(r_{1}\), the radial stresses \(p_{{r_{1} }}\) at \(r = r_{1}\) and \(p_{{r_{b} }}\) at \(r = r_{b}\) can be obtained from the following equation set:

$$ \left\{ \begin{gathered} p_{{r_{1} }} = \frac{B}{{1 - \xi_{0} }} - \frac{A}{{h + \xi_{0} }} + \left[ {p_{i} - \frac{B}{{1 - \xi_{0} }} + \frac{A}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{h + 1} } \right]\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{{\xi_{0} - 1}} \hfill \\ p_{{r_{b} }} = \frac{{2\left[ {E\left( {1 - \mu } \right)p_{{r_{1} }} r_{1}^{2} + \alpha E_{g} \left( {1 - \mu } \right)p_{0} } \right]}}{{\beta E_{g} + E\left[ {\left( {1 - 2\mu } \right)r_{b}^{2} + r_{1}^{2} } \right]}} \hfill \\ \left[ {p_{i} - \frac{B}{{1 - \xi_{0} }} + \frac{A}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{h + 1} } \right]\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{{\xi_{0} - 1}} + \frac{B}{{1 - \xi_{0} }} = \frac{1}{{1 + \xi_{0} }}\left[ {\frac{{2\left( {p_{{r_{b} }} r_{b}^{2} - p_{{r_{1} }} r_{1}^{2} } \right)}}{\beta } - A - B} \right] + \frac{A}{{h + \xi_{0} }} \hfill \\ \end{gathered} \right. $$
(44)

A.4 The solution for Form A4

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{2} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{2} + dr}} } \right. = p_{{r_{2} }} \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(45)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{2Dr_{0} }}{f + 1}t^{h + 1} \left[ {\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} + \frac{{D\left( {f - h} \right)}}{{\left( {f + 1} \right)\left( {h + 1} \right)}}} \right] + \frac{{Dr_{0} \left( {h - 1} \right)}}{h + 1} $$
(46)

where \(t = {{r_{1} } \mathord{\left/ {\vphantom {{r_{1} } {r_{2} }}} \right. \kern-\nulldelimiterspace} {r_{2} }}\).

The softening zone radius \(r_{1}\) and the residual zone radius \(r_{2}\) required in Eq. (46) can be obtained from the following equation set:

$$ \left\{ \begin{gathered} \left[ {p_{i} - \frac{{B^{\prime}}}{{1 - \xi_{r} }} + \frac{{A^{\prime}}}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} } \right]\left( {\frac{{r_{b} }}{{r_{0} }}} \right)^{{\xi_{r} - 1}} = \frac{{\sigma_{pr} - B^{\prime}}}{{1 - \xi_{r} }} + \left( {p_{{r_{2} }} - \frac{{\sigma_{pr} }}{{1 - \xi_{r} }}} \right)\left( {\frac{{r_{b} }}{{r_{2} }}} \right)^{{\xi_{r} - 1}} + \frac{{A^{\prime}}}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{b} }}} \right)^{f + 1} \hfill \\ p_{{r_{2} }} = \frac{2M}{{1 - \xi_{0} }}t^{{1 - \xi_{0} }} + \frac{{\sigma_{p} }}{{1 - \xi_{0} }} + \frac{{2DE^{\prime}}}{h + 1}\left[ {\frac{1}{{h + \xi_{0} }}t^{h + 1} + \frac{1}{{1 - \xi_{0} }}} \right] \hfill \\ r_{1} = r_{2} \left[ {\left( {\sigma_{p} - \sigma_{pr} } \right)\frac{h + 1}{{2DE^{\prime}}} + 1} \right]^{{\frac{1}{h + 1}}} \hfill \\ \end{gathered} \right. $$
(47)

where \(A^{\prime} = \frac{{2Df\xi_{r} E_{b} A_{b} }}{{\left( {f + 1} \right)S_{cb} S_{lb} }}t^{h + 1}\), \(B^{\prime} = \sigma_{pr} - \frac{D}{h + 1}\left[ {3h - 1 + \frac{2f - 2hf - 4h}{{f + 1}}t^{h + 1} } \right] - \xi_{r} \frac{{E_{b} A_{b} }}{{S_{cb} S_{lb} }}\).

A.5 The solution for Form A5

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{2} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{2} + dr}} } \right. = p_{{r_{2} }} \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{2} - dr}} } \right. = u_{r} \left| {_{{r = r_{2} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(48)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{2Dr_{0} }}{f + 1}t^{h + 1} \left[ {\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} + \frac{{D\left( {f - h} \right)}}{{\left( {f + 1} \right)\left( {h + 1} \right)}}} \right] + \frac{{Dr_{0} \left( {h - 1} \right)}}{h + 1} $$
(49)

The variables \(r_{1}\) and \(r_{2}\) required in Eq. (49) and the radial stresses \(p_{{r_{b} }}\) at \(r = r_{b}\) and \(p_{{r_{2} }}\) at \(r = r_{2}\) can be obtained from the following equation set:

$$ \left\{ \begin{gathered} p_{{r_{2} }} = \frac{{B^{\prime}}}{{1 - \xi_{r} }} - \frac{{A^{\prime}}}{{f + \xi_{0} }} + \left[ {m^{\prime} + \frac{{A^{\prime}}}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} } \right]\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{{\xi_{r} - 1}} \hfill \\ t^{h + 1} = \frac{1}{A}\left[ {p_{{r_{2} }} \left( {\xi_{r} - \xi_{0} } \right) + B^{\prime} - B + A^{\prime}} \right] \hfill \\ p_{{r_{b} }} = \frac{B}{{1 - \xi_{0} }} - \frac{A}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{h + 1} + \left[ {p_{{r_{2} }} - \frac{B}{{1 - \xi_{0} }} + \frac{A}{{h + \xi_{0} }}t^{h + 1} } \right]\left( {\frac{{r_{b} }}{{r_{2} }}} \right)^{{\xi_{0} - 1}} \hfill \\ \frac{1}{{1 - \xi_{0} }}\left( {B - \sigma_{p} - \frac{{2DE^{\prime}}}{h + 1}} \right) + \left[ {p_{{r_{2} }} - \frac{B}{{1 - \xi_{0} }} + \frac{A}{{h + \xi_{0} }}t^{h + 1} } \right]\left( {\frac{{r_{b} }}{{r_{2} }}} \right)^{{\xi_{0} - 1}} \hfill \\ = \frac{2M}{{1 - \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{{1 - \xi_{0} }} + \frac{1}{{h + \xi_{0} }}\left( {\frac{{2DE^{\prime}}}{h + 1} + A} \right)\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{h + 1} \hfill \\ \end{gathered} \right. $$
(50)

A.6 The solution for Form A6

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - {\text{d}}r}} } \right. = \sigma_{r} \left| {_{{r = r_{b} {\text{ + d}}r}} = p_{{r_{b} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{2} - {\text{d}}r}} } \right. = \sigma_{r} \left| {_{{r = r_{2} {\text{ + d}}r}} } \right. = p_{{r_{2} }} \hfill \\ u_{r} \left| {_{{r = r_{1} - {\text{d}}r}} } \right. = u_{r} \left| {_{{r = r_{1} {\text{ + d}}r}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{2} - {\text{d}}r}} } \right. = u_{r} \left| {_{{r = r_{2} {\text{ + d}}r}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{b} - {\text{d}}r}} } \right. = u_{r} \left| {_{{r = r_{b} {\text{ + d}}r}} } \right. \hfill \\ \end{gathered} \right. $$
(51)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{u_{{r_{1} }} f}}{f + 1} - M\left[ {\left( {h - f} \right)t^{h + 1} + 1} \right] + \left\{ {\frac{{u_{{r_{1} }} }}{f + 1} + M\left[ {\left( {2f - h + 1} \right)t^{h + 1} + 1} \right] - \left( {f + 1} \right)r_{1} - r_{2} } \right\}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f} $$
(52)

where \(M = \frac{{2\left( {p_{{r_{b} }} - p_{{r_{1} }} } \right)r_{b}^{2} r_{2} }}{{E_{g} \beta \left( {h + 1} \right)\left( {f + 1} \right)}}\).

The radial displacement \(u_{{r_{1} }}\) at \(r = r_{1}\) can be obtained by

$$ u_{{r_{1} }} = \frac{1 + \mu }{{\beta E_{g} }}r_{1} \left[ {\left( {1 - 2\mu } \right)\left( {p_{{r_{b} }} r_{b}^{2} - p_{{r_{1} }} r_{1}^{2} } \right) - \left( {p_{{r_{1} }} - p_{{r_{b} }} } \right)r_{b}^{2} } \right] $$
(53)

The variables \(r_{1}\), \(r_{2}\), \(p_{{r_{b} }}\) and \(p_{{r_{1} }}\) required in Eqs. (52) and (53) and the radial stress \(p_{{r_{2} }}\) at \(r = r_{2}\) can be obtained from the following equation set:

$$ \left\{ \begin{gathered} p_{{r_{b} }} = \frac{{2\left[ {E\left( {1 - \mu } \right)p_{{r_{1} }} r_{1}^{2} + \alpha E_{g} \left( {1 - \mu } \right)p_{0} } \right]}}{{\beta E_{g} + E\left[ {\left( {1 - 2\mu } \right)r_{b}^{2} + r_{1}^{2} } \right]}} \hfill \\ p_{{r_{2} }} = \frac{{B^{\prime}}}{{1 - \xi_{r} }} - \frac{{A^{\prime}}}{{f + \xi_{r} }} + \left[ {p_{i} - \frac{{B^{\prime}}}{{1 - \xi_{r} }} + \frac{{A^{\prime}}}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} } \right]\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{{\xi_{r} - 1}} \hfill \\ t^{h + 1} = \frac{1}{A}\left[ {p_{{r_{2} }} \left( {\xi_{r} - \xi_{0} } \right) + B^{\prime} - B + A^{\prime}} \right] \hfill \\ p_{{r_{1} }} = \frac{B}{{1 - \xi_{0} }}\left( {1 - t^{{\xi_{0} - 1}} } \right) + \frac{A}{{h + \xi_{0} }}\left( {t^{h + 1} - 1} \right) + p_{{r_{2} }} t^{{\xi_{0} - 1}} \hfill \\ r_{1} = \left\{ {\frac{{p_{{r_{b} }} r_{b}^{2} }}{{p_{{r_{1} }} }} - \frac{1}{2}\left[ {\left( {1 + \xi_{0} } \right) + \frac{A + B}{{p_{{r_{1} }} }}} \right]\beta } \right\}^{0.5} \hfill \\ \end{gathered} \right. $$
(54)

Appendix B. Solutions for the GRCs of tunnels supported by combined bolt–cable system

The elastic modulus of bolt–cable-reinforced zone and the cable-only-reinforced zone are set as \(E_{s}\) and \(E_{d}\), respectively. The circumferential space, longitudinal space and uniform length of cables are set as \(S_{cc}\), \(S_{lc}\) and \(L_{c}\). The elastic modulus, cross-sectional area and pretension load of a single cable are set as \(E_{c}\), \(A_{c}\) and \(F_{c}\), respectively. The other symbols are consistent with Appendix A.

B.1 The solution for Form B1

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ u_{r} \left| {_{{r = r_{b} - dr}} } \right. = u_{r} \left| {_{{r = r_{b} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{c} - dr}} } \right. = u_{r} \left| {_{{r = r_{c} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(55)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{1 + \mu }{{\alpha E_{s} }}r_{0} \left[ {\left( {1 - 2\mu } \right)\left( {p_{{r_{b} }} r_{b}^{2} - p_{i} r_{0}^{2} } \right) - \left( {p_{i} - p_{{r_{b} }} } \right)r_{b}^{2} } \right] $$
(56)

where \(p_{{r_{b} }}\) and \(p_{{r_{c} }}\) are the radial stress at \(r = r_{b}\) and \(r = r_{c}\), respectively, which can be obtained by the following equation set:

$$ \left\{ \begin{gathered} p_{{r_{b} }} = \frac{{2\left( {1 - \mu } \right)\left[ {\alpha E_{s} p_{{r_{b} }} r_{c}^{2} + \eta E_{d} p_{i} r_{0}^{2} } \right]}}{{\alpha E_{s} \left[ {\left( {1 - 2\mu } \right)r_{b}^{2} + r_{c}^{2} } \right] + \eta E_{d} \left[ {\left( {1 - 2\mu } \right)r_{b}^{2} + r_{0}^{2} } \right]}} \hfill \\ p_{{r_{c} }} = \frac{{2\left[ {E\left( {1 - \mu } \right)p_{{r_{b} }} r_{b}^{2} + \eta E_{d} \left( {1 - \mu } \right)p_{0} } \right]}}{{\eta E_{d} + E\left[ {\left( {1 - 2\mu } \right)r_{c}^{2} + r_{b}^{2} } \right]}} \hfill \\ \end{gathered} \right. $$
(57)

where \(\eta = r_{c}^{2} - r_{b}^{2}\).

B.2 The solution for Form B2

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{c} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{c} + dr}} = p_{{r_{c} }} } \right. \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(58)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{Dr_{0} }}{h + 1}\left[ {\left( {h - 1} \right) + 2\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{h + 1} } \right] $$
(59)

The softening zone radius \(r_{1}\) required in Eq. (59) and the radial stress \(p_{{r_{b} }}\) at \(r = r_{b}\) can be obtained from the equation:

$$ \left\{ \begin{gathered} p_{{r_{b} }} = \frac{{B_{2} }}{{1 - \xi_{0} }} - \frac{{A_{2} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{h + 1} + \left[ {p_{i} - \frac{{B_{2} }}{{1 - \xi_{0} }} + \frac{{A_{2} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{h + 1} } \right]\left( {\frac{{r_{b} }}{{r_{0} }}} \right)^{{\xi_{0} - 1}} \hfill \\ \frac{1}{{1 - \xi_{0} }}\left( {B_{1} - \sigma_{p} - \frac{{2DE^{\prime}}}{h + 1}} \right) + \left[ {p_{{r_{b} }} - \frac{{B_{1} }}{{1 - \xi_{0} }} + \frac{{A_{1} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{h + 1} } \right]\left( {\frac{{r_{c} }}{{r_{b} }}} \right)^{{\xi_{0} - 1}} \hfill \\ = \frac{2M}{{1 - \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{c} }}} \right)^{{1 - \xi_{0} }} + \frac{1}{{h + \xi_{0} }}\left( {A_{1} + \frac{{2DE^{\prime}}}{h + 1}} \right)\left( {\frac{{r_{1} }}{{r_{c} }}} \right)^{h + 1} \hfill \\ \end{gathered} \right. $$
(60)

where \(A_{1} = \frac{{2D\left( {h\xi_{0} E_{c} A_{c} - S_{cc} S_{lc} E^{\prime}} \right)}}{{\left( {1 + h} \right)S_{cc} S_{lc} }}\), \(B_{1} = \sigma_{p} - A_{1} - \frac{{\xi_{0} }}{{S_{cc} S_{lc} }}\left( {DE_{c} A_{c} + F_{c} } \right)\), \(A_{2} = \frac{2D}{{1 + h}}\left[ {h\xi_{0} \left( {\frac{{E_{b} A_{b} }}{{S_{cb} S_{lb} }} + \frac{{E_{c} A_{c} }}{{S_{cc} S_{lc} }}} \right) - E^{\prime}} \right]\), \(B_{2} = \sigma_{p} - A_{2} - \xi_{0} \left[ {D\left( {\frac{{E_{b} A_{b} }}{{S_{cb} S_{lb} }} + \frac{{E_{c} A_{c} }}{{S_{cc} S_{lc} }}} \right) + \frac{{F_{b} }}{{S_{cb} S_{lb} }} + \frac{{F_{c} }}{{S_{cc} S_{lc} }}} \right]\).

B.3 The solution for Form B3

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{c} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{c} + dr}} = p_{{r_{c} }} } \right. \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{b} - dr}} } \right. = u_{r} \left| {_{{r = r_{b} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(61)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{\left( {1 + \mu } \right)r_{1} }}{{E_{d} \left( {\beta + \eta } \right)}}\left\{ {\left[ {\left( {p_{{r_{b} }} - p_{{r_{1} }} } \right)r_{b}^{2} + \left( {p_{{r_{b} }} r_{b}^{2} - p_{{r_{1} }} r_{1}^{2} } \right)\left( {1 - 2\mu } \right)} \right] + \frac{{2\left( {p_{{r_{b} }} - p_{{r_{1} }} } \right)r_{b}^{2} }}{h + 1}\left[ {\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{h} - 1} \right]} \right\} $$
(62)

The softening zone radius \(r_{1}\), the radial stresses \(p_{{r_{1} }}\), \(p_{{r_{b} }}\) and \(p_{{r_{c} }}\) can be obtained from the following equation set:

$$ \left\{ \begin{gathered} p_{{r_{1} }} = \frac{{B_{1} }}{{1 - \xi_{0} }} - \frac{{A_{1} }}{{h + \xi_{0} }} + \left[ {p_{{r_{b} }} - \frac{{B_{1} }}{{1 - \xi_{0} }} + \frac{{A_{1} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{h + 1} } \right]\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{{\xi_{0} - 1}} \hfill \\ p_{{r_{c} }} = \frac{{2\left( {1 - \mu } \right)\left[ {Ep_{{r_{1} }} r_{1}^{2} + E_{d} \left( {\beta + \eta } \right)\left( {1 - \mu } \right)p_{0} } \right]}}{{\left( {\beta + \eta } \right)E_{d} + E\left[ {\left( {1 - 2\mu } \right)r_{c}^{2} + r_{1}^{2} } \right]}} \hfill \\ p_{{r_{b} }} = \frac{{B_{2} }}{{1 - \xi_{0} }} + \frac{{A_{2} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{h + 1} + \left[ {p_{i} - \frac{{B_{2} }}{{1 - \xi_{0} }} + \frac{{A_{2} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{h + 1} } \right]\left( {\frac{{r_{b} }}{{r_{0} }}} \right)^{{\xi_{0} - 1}} \hfill \\ \left[ {p_{{r_{b} }} - \frac{{B_{1} }}{{1 - \xi_{0} }} + \frac{{A_{1} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{h + 1} } \right]\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{{\xi_{0} - 1}} + \frac{{B_{1} }}{{1 - \xi_{0} }} = \frac{1}{{1 + \xi_{0} }}\left[ {\frac{{2\left( {p_{{r_{c} }} r_{c}^{2} - p_{{r_{1} }} r_{1}^{2} } \right)}}{{r_{c}^{2} - r_{1}^{2} }} - A_{1} - B_{1} } \right] + \frac{{A_{1} }}{{h + \xi_{0} }} \hfill \\ \end{gathered} \right. $$
(63)

B.4 The solution for Form B4

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{c} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{c} + dr}} = p_{{r_{c} }} } \right. \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{b} - dr}} } \right. = u_{r} \left| {_{{r = r_{b} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(64)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{\left( {1 + \mu } \right)r_{1} }}{{E_{s} \left( {\beta + \eta } \right)}}\left\{ {\left[ {\left( {p_{{r_{b} }} - p_{{r_{1} }} } \right)r_{b}^{2} + \left( {p_{{r_{b} }} r_{b}^{2} - p_{{r_{1} }} r_{1}^{2} } \right)\left( {1 - 2\mu } \right)} \right] + \frac{{2\left( {p_{{r_{b} }} - p_{{r_{1} }} } \right)r_{b}^{2} }}{h + 1}\left[ {\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{h} - 1} \right]} \right\} $$
(65)

The softening zone radius \(r_{1}\), the radial stresses \(p_{{r_{1} }}\), \(p_{{r_{b} }}\) and \(p_{{r_{c} }}\) can be obtained from the following equation set:

$$ \left\{ \begin{gathered} p_{{r_{b} }} = \frac{{\beta p_{{r_{c} }} r_{c}^{2} + \eta p_{{r_{1} }} r_{1}^{2} }}{{\left( {\eta + \beta } \right)r_{b}^{2} }} \hfill \\ p_{{r_{1} }} = \frac{{B_{2} }}{{1 - \xi_{0} }} - \frac{{A_{2} }}{{h + \xi_{0} }} + \left[ {p_{i} - \frac{{B_{2} }}{{1 - \xi_{0} }} + \frac{{A_{2} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{h + 1} } \right]\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{{\xi_{0} - 1}} \hfill \\ p_{{r_{c} }} = \frac{{2\left( {1 - \mu } \right)\left[ {Ep_{{r_{1} }} r_{1}^{2} + E_{d} \left( {\eta + \beta } \right)p_{0} } \right]}}{{\left( {\eta + \beta } \right)E_{d} + E\left[ {\left( {1 - 2\mu } \right)r_{c}^{2} + r_{1}^{2} } \right]}} \hfill \\ \left[ {p_{i} - \frac{{B_{2} }}{{1 - \xi_{0} }} + \frac{{A_{2} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{h + 1} } \right]\left( {\frac{{r_{1} }}{{r_{0} }}} \right)^{{\xi_{0} - 1}} + \frac{{B_{2} }}{{1 - \xi_{0} }} = \frac{1}{{1 + \xi_{0} }}\left[ {\frac{{2\left( {p_{{r_{c} }} r_{c}^{2} - p_{{r_{1} }} r_{1}^{2} } \right)}}{\eta + \beta } - A_{2} - B_{2} } \right] + \frac{{A_{2} }}{{h + \xi_{0} }} \hfill \\ \end{gathered} \right. $$
(66)

B.5 The solution for Form B5

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{2} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{2} + dr}} } \right. = p_{{r_{2} }} \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{b} - dr}} } \right. = u_{r} \left| {_{{r = r_{b} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(67)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{2Dr_{0} }}{f + 1}t^{h + 1} \left[ {\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} + \frac{{D\left( {f - h} \right)}}{{\left( {f + 1} \right)\left( {h + 1} \right)}}} \right] + \frac{{Dr_{0} \left( {h - 1} \right)}}{h + 1} $$
(68)

The variables \(r_{1}\) and \(r_{2}\) required in Eq. (68) can be obtained from the equation set:

$$ \left\{ \begin{gathered} \left[ {p_{{r_{b} }} - \frac{{B^{\prime}_{1} }}{{1 - \xi_{r} }} + \frac{{A^{\prime}_{1} }}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{b} }}} \right)^{f + 1} } \right]\left( {\frac{{r_{c} }}{{r_{b} }}} \right)^{{\xi_{r} - 1}} = \frac{{\sigma_{pr} - B^{\prime}_{1} }}{{1 - \xi_{r} }} + \left( {p_{{r_{2} }} - \frac{{\sigma_{pr} }}{{1 - \xi_{r} }}} \right)\left( {\frac{{r_{c} }}{{r_{2} }}} \right)^{{\xi_{r} - 1}} + \frac{{A^{\prime}_{1} }}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{c} }}} \right)^{f + 1} \hfill \\ p_{{r_{2} }} = \frac{2M}{{1 - \xi_{0} }}t^{{1 - \xi_{0} }} + \frac{{\sigma_{p} }}{{1 - \xi_{0} }} + \frac{{2DE^{\prime}}}{h + 1}\left[ {\frac{1}{{h + \xi_{0} }}t^{h + 1} + \frac{1}{{1 - \xi_{0} }}} \right] \hfill \\ r_{1} = r_{2} \left[ {\left( {\sigma_{p} - \sigma_{pr} } \right)\frac{h + 1}{{2DE^{\prime}}} + 1} \right]^{{\frac{1}{h + 1}}} \hfill \\ p_{{r_{b} }} = \frac{{B^{\prime}_{2} }}{{1 - \xi_{r} }} + \frac{{A^{\prime}_{2} }}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{b} }}} \right)^{f + 1} + \left[ {p_{i} - \frac{{B^{\prime}_{2} }}{{1 - \xi_{r} }} + \frac{{A^{\prime}_{2} }}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} } \right]\left( {\frac{{r_{b} }}{{r_{0} }}} \right)^{{\xi_{r} - 1}} \hfill \\ \end{gathered} \right. $$
(69)

where \(A^{\prime}_{1} = \frac{{2Df\xi_{r} E_{c} A_{c} t^{h + 1} }}{{\left( {1 + f} \right)S_{cc} S_{lc} }}\), \(B^{\prime}_{1} = \sigma_{pr} - \frac{D}{h + 1}\left[ {3h - 1 + \frac{2f - 2hf - 4h}{{f + 1}}t^{h + 1} } \right] - \frac{{\xi_{r} E_{c} A_{c} }}{{S_{cc} S_{lc} }}\), \(A^{\prime}_{2} = \frac{{2Df\xi_{r} t^{h + 1} }}{1 + f}\left( {\frac{{E_{b} A_{b} }}{{S_{cb} S_{lb} }} + \frac{{E_{c} A_{c} }}{{S_{cc} S_{lc} }}} \right)\), \(B^{\prime}_{2} = \sigma_{pr} - \frac{D}{h + 1}\left[ {3h - 1 + \frac{2f - 2hf - 4h}{{f + 1}}t^{h + 1} } \right] - \xi_{r} \left( {\frac{{E_{b} A_{b} }}{{S_{cb} S_{lb} }} + \frac{{E_{c} A_{c} }}{{S_{cc} S_{lc} }}} \right)\).

B.6 The solution for Form B6

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{c} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{c} + dr}} = p_{{r_{c} }} } \right. \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{2} - dr}} } \right. = u_{r} \left| {_{{r = r_{2} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(70)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{2Dr_{0} }}{f + 1}t^{h + 1} \left[ {\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} + \frac{{D\left( {f - h} \right)}}{{\left( {f + 1} \right)\left( {h + 1} \right)}}} \right] + \frac{{Dr_{0} \left( {h - 1} \right)}}{h + 1} $$
(71)

The variables \(r_{1}\) and \(r_{2}\) required in Eq. (71) can be obtained from the equation set:

$$ \left\{ \begin{gathered} p_{{r_{b} }} = \frac{{B_{2} }}{{1 - \xi_{0} }} - \frac{{A_{2} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{h + 1} + \left[ {p_{{r_{2} }} - \frac{{B_{2} }}{{1 - \xi_{0} }} + \frac{{A_{2} }}{{h + \xi_{0} }}t^{h + 1} } \right]\left( {\frac{{r_{b} }}{{r_{2} }}} \right)^{{\xi_{0} - 1}} \hfill \\ r_{2} = r_{1} \left[ {\frac{{p_{{r_{2} }} \left( {\xi_{r} - \xi } \right) - B_{2} + B^{\prime}_{2} }}{{A_{2} }}} \right]^{{\frac{1}{h + 1}}} \hfill \\ p_{{r_{2} }} = \frac{{B^{\prime}_{2} }}{{1 - \xi_{r} }} + \frac{{A^{\prime}_{2} }}{{f + \xi_{r} }} + \left[ {p_{i} - \frac{{B^{\prime}_{2} }}{{1 - \xi_{r} }} + \frac{{A^{\prime}_{2} }}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} } \right]\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{{\xi_{r} - 1}} \hfill \\ \frac{1}{{1 - \xi_{0} }}\left( {B_{1} - \sigma_{p} - \frac{{2DE^{\prime}}}{h + 1}} \right) + \left[ {p_{{r_{b} }} - \frac{{B_{1} }}{{1 - \xi_{0} }} + \frac{{A_{1} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{h + 1} } \right]\left( {\frac{{r_{c} }}{{r_{b} }}} \right)^{{\xi_{0} - 1}} \hfill \\ = \frac{2M}{{1 - \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{c} }}} \right)^{{1 - \xi_{0} }} + \frac{1}{{h + \xi_{0} }}\left( {\frac{{2DE^{\prime}}}{h + 1} + A_{1} } \right)\left( {\frac{{r_{1} }}{{r_{c} }}} \right)^{h + 1} \hfill \\ \end{gathered} \right. $$
(72)

B.7 The solution for Form B7

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{c} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{c} + dr}} = p_{{r_{c} }} } \right. \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{2} - dr}} } \right. = u_{r} \left| {_{{r = r_{2} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(73)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{u_{{r_{1} }} f}}{f + 1} - M^{\prime}\left[ {\left( {h - f} \right)t^{h + 1} + 1} \right] + \left\{ {\frac{{u_{{r_{1} }} }}{f + 1} + M^{\prime}\left[ {\left( {2f - h + 1} \right)t^{h + 1} + 1} \right] - \left( {f + 1} \right)r_{1} - r_{2} } \right\}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f} $$
(74)

where \(M^{\prime} = \frac{{2\left( {p_{{r_{b} }} - p_{{r_{1} }} } \right)r_{b}^{2} r_{2} }}{{E_{s} \beta \left( {h + 1} \right)\left( {f + 1} \right)}}\).

The radial displacement \(u_{{r_{1} }}\) at \(r = r_{1}\) can be obtained by

$$ u_{{r_{1} }} = \frac{1 + \mu }{{\beta E_{s} }}r_{1} \left[ {\left( {1 - 2\mu } \right)\left( {p_{{r_{b} }} r_{b}^{2} - p_{{r_{1} }} r_{1}^{2} } \right) - \left( {p_{{r_{1} }} - p_{{r_{b} }} } \right)r_{b}^{2} } \right] $$
(75)

The variables \(r_{1}\), \(r_{2}\), \(p_{{r_{b} }}\) and \(p_{{r_{1} }}\) required in Eqs. (74) and (75) and the radial stresses \(p_{{r_{2} }}\) at \(r = r_{2}\) and \(p_{{r_{c} }}\) at \(r = r_{c}\) can be obtained from the following equation set:

$$ \left\{ \begin{gathered} p_{{r_{b} }} = \frac{{2\left( {1 - \mu } \right)\left[ {\alpha E_{s} p_{{r_{b} }} r_{c}^{2} + \eta E_{d} p_{i} r_{0}^{2} } \right]}}{{\alpha E_{s} \left[ {\left( {1 - 2\mu } \right)r_{b}^{2} + r_{c}^{2} } \right] + \eta E_{d} \left[ {\left( {1 - 2\mu } \right)r_{b}^{2} + r_{0}^{2} } \right]}} \hfill \\ p_{{r_{c} }} = \frac{{2\left[ {E\left( {1 - \mu } \right)p_{{r_{b} }} r_{b}^{2} + \eta E_{d} \left( {1 - \mu } \right)p_{0} } \right]}}{{\eta E_{d} + E\left[ {\left( {1 - 2\mu } \right)r_{c}^{2} + r_{b}^{2} } \right]}} \hfill \\ p_{{r_{2} }} = \frac{{B^{\prime}_{2} }}{{1 - \xi_{r} }} - \frac{{A^{\prime}_{2} }}{{f + \xi_{r} }} + \left[ {p_{i} - \frac{{B^{\prime}_{2} }}{{1 - \xi_{r} }} + \frac{{A^{\prime}_{2} }}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} } \right]\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{{\xi_{r} - 1}} \hfill \\ t^{h + 1} = \frac{1}{{A_{2} }}\left[ {p_{{r_{2} }} \left( {\xi_{r} - \xi_{0} } \right) + B^{\prime}_{2} - B_{2} + A^{\prime}_{2} } \right] \hfill \\ p_{{r_{1} }} = \frac{{B_{2} }}{{1 - \xi_{0} }}\left( {1 - t^{{\xi_{0} - 1}} } \right) + \frac{{A_{2} }}{{h + \xi_{0} }}\left( {t^{h + 1} - 1} \right) + p_{{r_{2} }} t^{{\xi_{0} - 1}} \hfill \\ r_{1} = \left\{ {\frac{{p_{{r_{b} }} r_{b}^{2} }}{{p_{{r_{1} }} }} - \frac{1}{2}\left[ {\left( {1 + \xi_{0} } \right) + \frac{{A_{2} + B_{2} }}{{p_{{r_{1} }} }}} \right]\beta } \right\}^{0.5} \hfill \\ \end{gathered} \right. $$
(76)

B.8 The solution for Form B8

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{c} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{c} + dr}} = p_{{r_{c} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{2} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{2} + dr}} } \right. = p_{{r_{2} }} \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{2} - dr}} } \right. = u_{r} \left| {_{{r = r_{2} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(77)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{2Dr_{0} }}{f + 1}t^{h + 1} \left[ {\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} + \frac{{D\left( {f - h} \right)}}{{\left( {f + 1} \right)\left( {h + 1} \right)}}} \right] + \frac{{Dr_{0} \left( {h - 1} \right)}}{h + 1} $$
(78)

The softening zone radius \(r_{1}\) and the residual zone radius \(r_{2}\) required in Eq. (78) can be obtained from the following equation set:

$$ \left\{ \begin{gathered} \frac{1}{{1 - \xi_{0} }}\left[ {B_{1} - \sigma_{p} - \frac{{2DE^{\prime}}}{h + 1}} \right] + \left( {p_{{r_{2} }} - \frac{{B_{1} }}{1 - \xi } + \frac{{A_{1} }}{{h + \xi_{0} }}t^{h + 1} } \right)\left( {\frac{{r_{c} }}{{r_{2} }}} \right)^{{\xi_{0} - 1}} \hfill \\ = \frac{2M}{{1 - \xi_{0} }}\left( {\frac{{r_{c} }}{{r_{1} }}} \right)^{{\xi_{0} - 1}} + \frac{1}{{h + \xi_{0} }}\left( {\frac{{2DE^{\prime}}}{h + 1} + A_{1} } \right)\left( {\frac{{r_{1} }}{{r_{c} }}} \right)^{h + 1} \hfill \\ p_{{r_{2} }} = \frac{{B^{\prime}_{1} }}{{1 - \xi_{r} }} - \frac{{A^{\prime}_{1} }}{{f + \xi_{r} }} + \left[ {p_{{r_{b} }} - \frac{{B^{\prime}_{1} }}{{1 - \xi_{r} }} + \frac{{A^{\prime}_{1} }}{{f + \xi_{r} }}\left( {\frac{{r_{b} }}{{r_{0} }}} \right)^{f + 1} } \right]\left( {\frac{{r_{b} }}{{r_{0} }}} \right)^{{\xi_{r} - 1}} \hfill \\ p_{{r_{b} }} = \frac{{B^{\prime}_{2} }}{{1 - \xi_{r} }} - \frac{{A^{\prime}_{2} }}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{b} }}} \right)^{f + 1} + \left[ {p_{i} - \frac{{B^{\prime}_{2} }}{{1 - \xi_{r} }} + \frac{{A^{\prime}_{2} }}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} } \right]\left( {\frac{{r_{b} }}{{r_{0} }}} \right)^{{\xi_{r} - 1}} \hfill \\ r_{1} = r_{2} \left[ {\left( {\sigma_{p} - \sigma_{pr} } \right)\frac{h + 1}{{2DE^{\prime}}} + 1} \right]^{{\frac{1}{h + 1}}} \hfill \\ \end{gathered} \right. $$
(79)

B.9 The solution for Form B9

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{c} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{c} + dr}} = p_{{r_{c} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{2} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{2} + dr}} } \right. = p_{{r_{2} }} \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{2} - dr}} } \right. = u_{r} \left| {_{{r = r_{2} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{b} - dr}} } \right. = u_{r} \left| {_{{r = r_{b} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(80)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{u_{{r_{1} }} f}}{f + 1} - M^{\prime\prime}\left[ {\left( {h - f} \right)t^{h + 1} + 1} \right] + \left\{ {\frac{{u_{{r_{1} }} }}{f + 1} + M^{\prime\prime}\left[ {\left( {2f - h + 1} \right)t^{h + 1} + 1} \right] - \left( {f + 1} \right)r_{1} - r_{2} } \right\}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f} $$
(81)

where \(M^{\prime\prime} = \frac{{2\left( {p_{{r_{c} }} - p_{{r_{1} }} } \right)r_{c}^{2} r_{2} }}{{E_{d} \left( {\beta + \eta } \right)\left( {h + 1} \right)\left( {f + 1} \right)}}\).

The radial displacement \(u_{{r_{1} }}\) at \(r = r_{1}\) can be obtained by

$$ u_{{r_{1} }} = \frac{1 + \mu }{{\left( {\beta + \eta } \right)E_{d} }}r_{1} \left[ {\left( {1 - 2\mu } \right)\left( {p_{{r_{c} }} r_{c}^{2} - p_{{r_{1} }} r_{1}^{2} } \right) - \left( {p_{{r_{1} }} - p_{{r_{c} }} } \right)r_{c}^{2} } \right] $$
(82)

The variables \(r_{1}\), \(r_{2}\), \(p_{{r_{1} }}\) and \(p_{{r_{c} }}\) required in Eq. (82) can be obtained from the equation set:

$$ \left\{ \begin{gathered} p_{{r_{2} }} = \frac{{B^{\prime}_{1} }}{{1 - \xi_{r} }} - \frac{{A^{\prime}_{1} }}{{f + \xi_{r} }} + \left[ {p_{{r_{b} }} - \frac{{B^{\prime}_{1} }}{{1 - \xi_{r} }} + \frac{{A^{\prime}_{1} }}{{f + \xi_{r} }}\left( {\frac{{r_{b} }}{{r_{0} }}} \right)^{f + 1} } \right]\left( {\frac{{r_{b} }}{{r_{0} }}} \right)^{{\xi_{r} - 1}} \hfill \\ p_{{r_{c} }} = \frac{{2\left( {1 - \mu } \right)\left[ {Ep_{{r_{1} }} r_{1}^{2} + E_{d} \left( {\beta + \eta } \right)\left( {1 - \mu } \right)p_{0} } \right]}}{{\left( {\beta + \eta } \right)E_{d} + E\left[ {\left( {1 - 2\mu } \right)r_{c}^{2} + r_{1}^{2} } \right]}} \hfill \\ p_{{r_{c} }} - \frac{{B_{1} }}{{1 - \xi_{0} }} + \frac{{A_{1} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{c} }}} \right)^{h + 1} = \left[ {p_{{r_{2} }} - \frac{{B_{1} }}{{1 - \xi_{0} }} + \frac{{A_{1} }}{{h + \xi_{0} }}t^{h + 1} } \right]\left( {\frac{{r_{c} }}{{r_{2} }}} \right)^{{\xi_{0} - 1}} \hfill \\ p_{{r_{b} }} = \frac{{B^{\prime}_{2} }}{{1 - \xi_{r} }} - \frac{{A^{\prime}_{2} }}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{b} }}} \right)^{f + 1} + \left[ {p_{i} - \frac{{B^{\prime}_{2} }}{{1 - \xi_{r} }} + \frac{{A^{\prime}_{2} }}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} } \right]\left( {\frac{{r_{b} }}{{r_{0} }}} \right)^{{\xi_{r} - 1}} \hfill \\ p_{{r_{1} }} = \frac{{B_{1} }}{{1 - \xi_{0} }}\left( {1 + t^{{\xi_{0} - 1}} } \right) + \frac{{A_{1} }}{{h + \xi_{0} }}\left( {t^{h + 1} - 1} \right) + p_{{r_{2} }} t^{{\xi_{0} - 1}} \hfill \\ p_{{r_{1} }} \left( {1 + \xi_{0} } \right) + A_{1} + B_{1} = \frac{{2\left( {p_{{r_{c} }} r_{c}^{2} - p_{{r_{1} }} r_{1}^{2} } \right)}}{{r_{c}^{2} - r_{1}^{2} }} \hfill \\ \end{gathered} \right. $$
(83)

B.10 The solution for Form B10

The boundary conditions are

$$ \left\{ \begin{gathered} \sigma_{r} \left| {_{{r = r_{0} }} } \right. = p_{i} \hfill \\ \sigma_{r} \left| {_{r = \infty } } \right. = p_{0} \hfill \\ \sigma_{r} \left| {_{{r = r_{b} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{b} + dr}} = p_{{r_{b} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{c} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{c} + dr}} = p_{{r_{c} }} } \right. \hfill \\ \sigma_{r} \left| {_{{r = r_{2} - dr}} } \right. = \sigma_{r} \left| {_{{r = r_{2} + dr}} } \right. = p_{{r_{2} }} \hfill \\ u_{r} \left| {_{{r = r_{1} - dr}} } \right. = u_{r} \left| {_{{r = r_{1} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{2} - dr}} } \right. = u_{r} \left| {_{{r = r_{2} + dr}} } \right. \hfill \\ u_{r} \left| {_{{r = r_{b} - dr}} } \right. = u_{r} \left| {_{{r = r_{b} + dr}} } \right. \hfill \\ \end{gathered} \right. $$
(84)

The tunnel wall displacement can be given by

$$ u_{{r_{0} }} = \frac{{u_{{r_{1} }} f}}{f + 1} - M^{\prime\prime}\left[ {\left( {h - f} \right)t^{h + 1} + 1} \right] + \left\{ {\frac{{u_{{r_{1} }} }}{f + 1} + M^{\prime\prime}\left[ {\left( {2f - h + 1} \right)t^{h + 1} + 1} \right] - \left( {f + 1} \right)r_{1} - r_{2} } \right\}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f} $$
(85)

where \(u_{{r_{1} }}\) can be obtained by Eq. (82).

The variables \(r_{1}\), \(r_{2}\), \(p_{{r_{1} }}\) and \(p_{{r_{c} }}\) required in Eq. (85) can be obtained from the equation set:

$$ \left\{ \begin{gathered} p_{{r_{c} }} = \frac{{2\left( {1 - \mu } \right)\left[ {Ep_{{r_{1} }} r_{1}^{2} + E_{d} \left( {\beta + \eta } \right)\left( {1 - \mu } \right)p_{0} } \right]}}{{\left( {\beta + \eta } \right)E_{d} + E\left[ {\left( {1 - 2\mu } \right)r_{c}^{2} + r_{1}^{2} } \right]}} \hfill \\ p_{{r_{1} }} - \frac{{B_{1} }}{{1 - \xi_{0} }} + \frac{{A_{1} }}{{h + \xi_{0} }} = \left[ {p_{{r_{b} }} - \frac{{B_{1} }}{{1 - \xi_{0} }} + \frac{{A_{1} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{h + 1} } \right]\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{{\xi_{0} - 1}} \hfill \\ p_{{r_{b} }} = \frac{{B_{2} }}{{1 - \xi_{0} }} - \frac{{A_{2} }}{{h + \xi_{0} }}\left( {\frac{{r_{1} }}{{r_{b} }}} \right)^{h + 1} + \left[ {p_{{r_{2} }} - \frac{{B_{2} }}{{1 - \xi_{0} }} + \frac{{A_{2} }}{{h + \xi_{0} }}t^{h + 1} } \right]\left( {\frac{{r_{b} }}{{r_{2} }}} \right)^{{\xi_{0} - 1}} \hfill \\ p_{{r_{1} }} = \frac{{B_{1} }}{{1 - \xi_{0} }}\left( {1 + t^{{\xi_{0} - 1}} } \right) + \frac{{A_{1} }}{{h + \xi_{0} }}\left( {t^{h + 1} - 1} \right) + p_{{r_{2} }} t^{{\xi_{0} - 1}} \hfill \\ p_{{r_{1} }} \left( {1 + \xi_{0} } \right) + A_{1} + B_{1} = \frac{{2\left( {p_{{r_{c} }} r_{c}^{2} - p_{{r_{1} }} r_{1}^{2} } \right)}}{{r_{c}^{2} - r_{1}^{2} }} \hfill \\ p_{{r_{2} }} = \frac{{B^{\prime}_{2} }}{{1 - \xi_{r} }} - \frac{{A^{\prime}_{2} }}{{f + \xi_{r} }} + \left[ {p_{i} - \frac{{B^{\prime}_{2} }}{{1 - \xi_{r} }} + \frac{{A^{\prime}_{2} }}{{f + \xi_{r} }}\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{f + 1} } \right]\left( {\frac{{r_{2} }}{{r_{0} }}} \right)^{{\xi_{r} - 1}} \hfill \\ \end{gathered} \right. $$
(86)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zhang, D., Fang, Q. et al. Convergence-confinement analysis for tunnels with combined bolt–cable system considering the effects of intermediate principal stress. Acta Geotech. 18, 3323–3348 (2023). https://doi.org/10.1007/s11440-022-01758-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01758-4

Keywords

Navigation