Skip to main content
Log in

Geomorphology-oriented digital terrain analysis: Progress and perspectives

  • Review Article
  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

Digital terrain analysis (DTA) is one of the most important contents in the research of geographical information science (GIS). However, on the basis of the digital elevation model (DEM), many problems exist in the current research of DTA in geomorphological studies. For instance, the current DTA research appears to be focused more on morphology, phenomenon, and modern surface rather than mechanism, process, and underlying terrain. The current DTA research needs to be urgently transformed from the study of landform morphology to one focusing on landform process and mechanism. On this basis, this study summarizes the current research status of geomorphology-oriented DTA and systematically reviews and analyzes the research about the knowledge of geomorphological ontology, terrain modeling, terrain derivative calculation, and terrain analytical methods. With the help of DEM data, DTA research has the advantage of carrying out geomorphological studies from the perspective of surface morphology. However, the study of DTA has inherent defects in terms of data expression and analytic patterns. Thus, breakthroughs in basic theories and key technologies are necessary. Moreover, scholars need to realize that DTA research must be transformed from phenomenon to mechanism, from morphology to process, and from terrain to landform. At present, the research development of earth science has reached the critical stage in which the DTA research should focus more on geomorphological ontology. Consequently, this study proposes several prospects of geomorphology-oriented DTA from the aspects of value-added DEM data model, terrain derivatives and their spatial relations, and macro-terrain analysis. The study of DTA based on DEM is at a critical period along with the issue on whether the current GIS technology can truly support the development of geography. The research idea of geomorphology-oriented DTA is expected to be an important exploration and practice in the field of GIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai B B, Qin C Z, Zhu A X, 2015. Parallelization of regional operation algorithm using parallel raster-based geocomputation operators. Journal of Geo-Information Science, 17(5): 562–567. (in Chinese)

    Google Scholar 

  • Ardiansyah P O D, Yokoyama R, 2002. DEM generation method from contour lines based on the steepest slope segment chain and a monotone interpolation function. ISPRS Journal of Photogrammetry & Remote Sensing, 57(1): 86–101.

    Article  Google Scholar 

  • Ariza-Villaverde A B, Jiménez-Hornero F J, De Ravé E G, 2015. Influence of DEM resolution on drainage network extraction: A multifractal analysis. Geomorphology, 241: 243–254.

    Article  Google Scholar 

  • Blaschke T, Strobl J, 2001. What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. Geo-Informations-Systeme, 14(6): 12–17.

    Google Scholar 

  • Bowman D, Svoray T, Devora S et al., 2010. Extreme rates of channel incision and shape evolution in response to a continuous, rapid base-level fall, the Dead Sea, Israel. Geomorphology, 114(3): 227–237.

    Article  Google Scholar 

  • Cai Q G, Lu Z X, Wang G P, 1996. Process-based soil erosion and sediment yield model in a small basin in the Hilly Loess Region. Acta Geographica Sinica, 51(2): 108–117. (in Chinese)

    Google Scholar 

  • Carrara A, Bitelli G, Carla R, 1997. Comparison of techniques for generating digital terrain models from contour lines. International Journal of Geographical Information Systems, 11(5): 451–473.

    Article  Google Scholar 

  • Chen C F, Liu F Y, Yan C Q et al., 2016. A huber-derived robust multi-quadric interpolation method for DEM construction. Geomatics and Information Science of Wuhan University, 41(6): 803–809. (in Chinese)

    Google Scholar 

  • Chen C K, 1956. The terrain types and development rules of loess landform in southeastern region of Gansu. Acta Geographica Sinica, 22(3): 223–231. (in Chinese)

    Google Scholar 

  • Chen F H, Dong G H, Zhang D J et al., 2015a. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 347(6219): 248–250.

    Article  Google Scholar 

  • Chen J, Chen L J, Li R et al., 2015b. Spatial distribution and ten years change of global built-up areas derived from GlobeLand30. Acta Geodaetica et Cartographica Sinica, 44(11): 1181–1188. (in Chinese)

    Google Scholar 

  • Chen S P, Yue T X, Li H G, 2000. Studies on Geo-Informatic Tupu and its application. Geographical Research, 19(4): 337–343. (in Chinese)

    Google Scholar 

  • Chen T, Zhang H P, Wang W T, 2014. Topographic variation along the middle-east segment of Haiyuan Fault Zone and its implications. Seismology and Geology, 36(2): 449–463.

    Google Scholar 

  • Chen Y X, Cui Z J, 2009. Influence of climate and tectonic movements on granite landforms in China. Journal of Geographical Sciences, 19(5): 587–599.

    Article  Google Scholar 

  • Chen Z Y, 2002. Holocene Nile Delta sea-level fluctuations and its impact on environment: With special reference to the Changjiang River Delta. Acta Oceanologica Sinica, 24(2): 77–83.

    Google Scholar 

  • Cheng W M, Wang N, Zhao S M et al., 2016. Relative tectonics and debris flow hazards in the Beijing mountain area from DEM-derived geomorphic indices and drainage analysis. Geomorphology, 257: 134–142.

    Article  Google Scholar 

  • Cheng W M, Zhou C H, Chai H X et al., 2011. Research and compilation of the Geomorphologic Atlas of the People’s Republic of China (1:1,000,000). Journal of Geographical Sciences, 21(1): 89–100.

    Article  Google Scholar 

  • Chu P Y, 2010. Science in Ancient China: Researches and Reflections. The Journal of Asian Studies, 60(2): 538–540.

    Google Scholar 

  • Cui P, Chen X Q, Zhu Y Y et al., 2011. The Wenchuan Earthquake (May 12, 2008), Sichuan Province, China, and resulting geohazards. Natural Hazards, 56(1): 19–36.

    Article  Google Scholar 

  • Cui Z J, 1980. Essential features of the development of glacial landforms on Qinghai-Xizang Plateau. Acta Geographica Sinica, 35(2): 137–148. (in Chinese)

    Google Scholar 

  • Cui Z J, Gao Q Z, Liu G N et al., 1996. Planation surface and karst age of the Qinghai-Tibet Plateau and its initial height. Chinese Science Bulletin, 41(15): 1402–1406.

    Google Scholar 

  • Cullum C, Brierley G, Perry G L W et al., 2017. Landscape archetypes for ecological classification and mapping: The virtue of vagueness. Progress in Physical Geography, 41(1): 95–123.

    Article  Google Scholar 

  • Dang Y M, Zhang C Y, Zhou X H et al., 2017. Shoreline surveying method based on the stereo imaging and mapping. Bulletin of Surveying and Mapping, 11: 47–50. (in Chinese)

    Google Scholar 

  • Dong Z, Qu J J, Lu J H et al., 2010. Compilation of geomorphic map of the Kumtagh Desert. Journal of Desert Research, 30(3): 483–491. (in Chinese)

    Google Scholar 

  • Drăguţ L, Blaschke T, 2006. Automated classification of landform elements using object-based image analysis. Geomorphology, 81(3/4): 330–344.

    Article  Google Scholar 

  • Evans I S, 2012. Geomorphometry and landform mapping: What is a landform? Geomorphology, 137(1): 94–106.

    Article  Google Scholar 

  • Evans I S, 2013. Glacial landforms, erosional features: Major scale forms. In: Elias, S.A. (Ed.), Encyclopedia of Quaternary Science, 2nd ed. Amsterdam: Elsevier, 847–864.

    Chapter  Google Scholar 

  • Fisher G B, Bookhagen B, Amos C B, 2013. Channel planform geometry and slopes from freely available high-spatial resolution imagery and DEM fusion: Implications for channel width scalings, erosion proxies, and fluvial signatures in tectonically active landscapes. Geomorphology, 194: 46–56.

    Article  Google Scholar 

  • Florinsky I V, 1998. Combined analysis of digital terrain models and remotely sensed data in landscape investigations. Progress in Physical Geography, 22(1): 33–60.

    Article  Google Scholar 

  • Florinsky I V, 2009. Computation of the third-order partial derivatives from a digital elevation model. International Journal of Geographical Information Science, 23(2): 213–231.

    Article  Google Scholar 

  • Fu B J, Wang X L, 1994. The application of DEM in studying soil erosion type and process in the loess hilly and gully area. Journal of Soil and Water Conservation, 8(3): 17–21. (in Chinese)

    Google Scholar 

  • Gan Z M, 1980. Effects of geomorphic features on soil erosion. Chinese Journal of Soil Science, 5:16–17. (in Chinese)

    Google Scholar 

  • Gao M X, Zeilinger G, Xu X W et al., 2013. DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China. Geomorphology, 190: 61–72.

    Article  Google Scholar 

  • Gomez C, Oguchi T, Evans I S, 2015. Spatial analysis in geomorphology (1): Present directions, from collection to processing. Geomorphology, 242: 1–2.

    Article  Google Scholar 

  • Gong J Y, 1992. An unified data structure based on linear quadtrees. Acta Geodaetica et Cartographica Sinica, 21(4): 259–266. (in Chinese)

    Google Scholar 

  • Guo L P, Ye Q H, Yao T D et al., 2007. The glacial landforms and the changes of glacier and lake area in the Mapam Yumco Basin in Tibetan Plateau based on GIS. Journal of Glaciology and Geocryology, 29(4): 517–524. (in Chinese)

    Google Scholar 

  • Hails J R, 1987. Wind as a geological process. Earth Science Reviews, 24(3): 231–232.

    Article  Google Scholar 

  • Hengl T, Rossiter D G, 2003. Supervised landform classification to enhance and replace photo-interpretation in semi-detailed soil survey. Soil Science Society of America Journal, 67(6): 1810–1822.

    Article  Google Scholar 

  • Jiang G M, Nie Q, Chen X S, 2017. Key technologies analysis of DEM production based on LIDAR data. Bulletin of Surveying and Mapping, 6: 90–93. (in Chinese)

    Google Scholar 

  • Jiang H C, Yang Q K, 2014. Algorithm comparison of relief amplitude based on dynamic effect model. Bulletin of Soil and Water Conservation, 34(6): 162–166. (in Chinese)

    Google Scholar 

  • Jiang J, Chen J, 2000. Some consideration for update of foundation geo-information database. Bulletin of Surveying and Mapping, 5: 1–3. (in Chinese)

    Google Scholar 

  • Lars E, Ulrik M, 1995. Rapid generation of digital elevation models from topographic maps. International Journal of Geographical Information Systems, 9(3): 329–340.

    Article  Google Scholar 

  • Li A N, Bian J H, Zhang Z J, 2016. Progresses, opportunities, and challenges of mountain remote sensing research. Journal of Remote Sensing, 20(5): 1199–1215. (in Chinese)

    Google Scholar 

  • Li B Y, Pan B T, Cheng W M et al., 2013a. Research on geomorphological regionalization of China. Acta Geographica Sinica, 68(3): 5–10. (in Chinese)

    Google Scholar 

  • Li B Y, Pan B T, Han J F, 2008. Basic terrestrial geomorphological types in China and their circumscriptions. Quaternary Sciences, 28(4): 535–543.

    Google Scholar 

  • Li D R, Chen X Y, 1990. Automatical generation of triangulated irregular networks for DTM by mathematical morphology. Acta Geodaetica et Cartographica Sinica, 19(3): 161–172. (in Chinese)

    Google Scholar 

  • Li J, Zhou C H, 2003. Appropriate grid size for terrain based landslide risk assessment in Lantau Island, Hong Kong. Journal of Remote Sensing, 7(2): 86–92. (in Chinese)

    Google Scholar 

  • Li L B, Xu G, Hu J M, 2012a. Quantitative analysis of active structures based on the upper reaches of the Weihe River in DEM. Quaternary Sciences, 32(5): 866–879. (in Chinese)

    Google Scholar 

  • Li M, Yang X, Na J M et al., 2017. Regional topographic classification in the North Shaanxi Loess Plateau based on catchment boundary profiles. Progress in Physical Geography, 41(3): 302–324.

    Article  Google Scholar 

  • Li R, Yang Q K, Wu P T et al., 2003. On the strategy of sci-tech development of soil and water conservation in China in the 21st century. Science of Soil and Water Conservation, 1(3): 5–9. (in Chinese)

    Google Scholar 

  • Li R C, Yuan L W, Li S et al., 2013b. A vector field template matching method of DEM slope extraction. Acta Geodaetica et Cartographica Sinica, 42(6): 922–928. (in Chinese)

    Google Scholar 

  • Li X, Liu S M, Ma M G et al., 2012b. An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin. Advances in Earth Science, 27(5): 481–498. (in Chinese)

    Google Scholar 

  • Li Z L, 2006. Digital terrain analysis. Acta Geographica Sinica, 61(12): 1326–1326. (in Chinese)

    Article  Google Scholar 

  • Liu A L, Tang G A, 2006. DEM based auto-classification of Chinese landform. Geo-Information Science, 8(4): 8–14. (in Chinese)

    Google Scholar 

  • Liu C M, Hong B X, Zeng M X et al., 1965. Preliminary experimental study on the relationship between storm runoff forecast on the Loess Plateau. Science Bulletin, 10(2): 158–161.

    Google Scholar 

  • Liu D S, 1985. Loess and Environment. Beijing: Science Press.

    Google Scholar 

  • Liu K, Tang G A, Jiang L et al., 2015. Regional-scale calculation of the LS factor using parallel processing. Computers & Geosciences, 78: 110–122.

    Article  Google Scholar 

  • Liu X J, Bian L, Lu H X et al., 2008. The accuracy assessment on slope algorithms with DEM error spatial autocorrelation. Acta Geodaetica et Cartographica Sinica, 37(2): 200–206. (in Chinese)

    Google Scholar 

  • Liu Y, Wang Y X, Pan B T, 1999. A preliminary approach on the 3D presentation and quantitative analysis of planation surface. Geographical Research, 18(4): 391–399. (in Chinese)

    Google Scholar 

  • Lu H Y, 2018. Progress in geomorphology and future study: A brief review. Progress in Geography, 37(1): 8–15. (in Chinese)

    Google Scholar 

  • Lu H Y, An Z S, 1998. Paleoclimatic significance of grain size composition of loess in Loess Plateau. Science in China (Series D), 28(3): 278–283. (in Chinese)

    Google Scholar 

  • Lu H Y, Guo Z T, 2013. Climate change of East Asia in Late Cenozoic Era: Progresses and problems. Science China: Earth Science, 43(12): 1907–1918. (in Chinese)

    Google Scholar 

  • Lucieer A, Turner D, King D H et al., 2014. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds. International Journal of Applied Earth Observation & Geoinformation, 27(4): 53–62.

    Article  Google Scholar 

  • Lun W, Tong Q X, 2008. Framework and development of digital China. Science in China, 51(Suppl.1): 1–5.

    Google Scholar 

  • Luo L X, 1956. A tentative classification of landforms in the Loess Plateau. Acta Geographica Sinica, 22(3): 201–222. (in Chinese)

    Google Scholar 

  • Ma S B, An Y L, 2012. Auto-classification of landform in karst region based on ASTER GDEM. Scientia Geographica Sinica, 32(3): 368–373. (in Chinese)

    Google Scholar 

  • Minár J, Evans I S, Krcho J, 2013. Geomorphometry: Quantitative land-surface analysis. Treatise on Geomorphology, 14: 22–34.

    Article  Google Scholar 

  • Moharana P C, Kar A, 2002. Watershed simulation in a sandy terrain of the Thar desert using GIS. Journal of Arid Environments, 51(4): 489–500.

    Article  Google Scholar 

  • Nan X, Li A N, Chen Y et al., 2016. Design and compilation of digital mountain map of China (1:6700000) in vertical layout. Remote Sensing Technology and Application, 31(3): 451–458. (in Chinese)

    Google Scholar 

  • Needham J, Ling W, 1959. Science and Civilisation in China: Volume 3, Mathematics and the Sciences of the Heavens and the Earth. New York: Cambridge University Press.

    Google Scholar 

  • Noh M J, Howat I M, 2015. Automated stereo-photogrammetric DEM generation at high latitudes: Surface extraction with TIN-based Search-space Minimization (SETSM) validation and demonstration over glaciated regions. Mapping Sciences & Remote Sensing, 52(2): 198–217.

    Article  Google Scholar 

  • Oldroyd D R, Grapes R H, 2008. Contributions to the history of geomorphology and Quaternary geology: An introduction. Geological Society London Special Publications, 301(1): 1–17.

    Article  Google Scholar 

  • Pan B G, Gao H S, Li J J, 2002. On problems of planation surface: A discussion on the planation surface in Qinghai-Xizang Plateau. Scientia Geographica Sinica, 22(5): 520–526. (in Chinese)

    Google Scholar 

  • Pan B G, Li J J, Cao J X et al., 1996. Study on the geomorphic evolution and development of the Yellow River in the Hualong Basin. Mountain Research, 14(3): 153–158. (in Chinese)

    Google Scholar 

  • Qin C Z, Lu Y J, Bao L L et al., 2009. Simple Digital Terrain Analysis Software (SimDTA 1.0) and its application in fuzzy classification of slope positions. Journal of Geo-Information Science, 11(6): 737–743. (in Chinese)

    Article  Google Scholar 

  • Qin C Z, Zhu A X, Li B L et al., 2006. Review of multiple flow direction algorithms based on gridded digital elevation models. Earth Science Frontier, 13(3): 95–102.

    Google Scholar 

  • Qin C Z, Zhu A X, Shi X et al., 2007. Fuzzy inference of spatial gradation of slope positions. Geographical Research, 26(6): 1165–1174. (in Chinese)

    Google Scholar 

  • Qin H R, Zhu D H, 1984. A proposed classification of tropical and subtropical Karst features in south China. Carsologica Sinica, 2: 67–73. (in Chinese)

    Google Scholar 

  • Qiu L J, Zheng F L, Yin R S, 2012. Effects of DEM resolution and watershed subdivision on hydrological simulation in the Xingzihe watershed. Acta Ecologica Sinica, 32(12): 3754–3763. (in Chinese)

    Article  Google Scholar 

  • Qiu S W, Li F H, 1982. On the problem of geomorphological classification in China. Scientia Geographica Sinica, 2(4): 327–335. (in Chinese)

    Google Scholar 

  • Ritter D F, Kochel R C, Miller J R, 1986. Process Geomorphology. Amsterdam: Elsevier.

    Google Scholar 

  • Schmidt J, Evans I S, Brinkmann J, 2003. Comparison of polynomial models for land surface curvature calculation. International Journal of Geographical Information Science, 17(8): 797–814.

    Article  Google Scholar 

  • Scown M W, Thoms M C, De Jager N R, 2015. Floodplain complexity and surface metrics: Influences of scale and geomorphology. Geomorphology, 245: 102–116.

    Article  Google Scholar 

  • Shchukin I S, 2014. On a “structural” and “climatic” geomorphology and a critique of certain concepts. Soviet Geography, 11(4): 246–251.

    Article  Google Scholar 

  • Shen Y C, 1956. Geomorphological Regionalization Theory System of China. Beijing: Science Press.

    Google Scholar 

  • Song X D, Dou W F, Tang G A, et al., 2013. Research on data partitioning of distributed parallel terrain analysis. Journal of National University of Defense and Technology, 35(1): 130–135. (in Chinese)

    Google Scholar 

  • Spaete L P, Glenn N F, Derryberry D R et al., 2011. Vegetation and slope effects on accuracy of a LiDAR-derived DEM in the sagebrush steppe. Remote Sensing Letters, 2(4): 317–326.

    Article  Google Scholar 

  • Sun C L, Wang J L, 2008. The progress on automatic basin streamline extracting & classifying methods based on DEM. Progress in Geography, 27(1): 118–124. (in Chinese)

    Google Scholar 

  • Sun K M, Li D R, Sui H G et al., 2009. An object-oriented image smoothing algorithm based on the convexity model and multi-scale segmentation. Geomatics and Information Science of Wuhan University, 34(4): 483–487. (in Chinese)

    Google Scholar 

  • Takahashi S, Ikeda T, Shinagawa Y et al., 1995. Algorithms for extracting correct critical points and constructing topological graphs from discrete geographical elevation data: Proceedings of the Computer Graphics Forum. New York: Wiley Online Library.

    Google Scholar 

  • Tang G A, 2014. Progress of DEM and digital terrain analysis in China. Acta Geographica Sinica, 69(9): 1305–1325. (in Chinese)

    Google Scholar 

  • Tang G A, Li F Y, Liu X J et al., 2008. Research on the slope spectrum of the Loess Plateau. Science in China Series E: Technological Sciences, 51(1): 175–185.

    Article  Google Scholar 

  • Tang G A, Li F Y, Xiong L Y, 2017. Progress of digital terrain analysis in the Loess Plateau of China. Geography and Geo-Information Science, 33(4): 1–7. (in Chinese)

    Google Scholar 

  • Tang G A, Li F Y, Yang X et al., 2015. Exploration and Practice of Digital Terrain Analysis on the Loess Plateau. Beijing: Science Press.

    Google Scholar 

  • Tang G A, Liu X J, Fang L et al., 2006. A review on the scale issue in DEMs and digital terrain analysis. Geomatics and Information Science of Wuhan University, 31(12): 1059–1066. (in Chinese)

    Google Scholar 

  • Tang G A, Liu X J, Lv G N, 2005. The Principle and Method of Digital Elevation Model for Geo-analysis. Beijing: Science Press.

    Google Scholar 

  • Tang G A, Xiao C C, Jia D X et al., 2007. DEM based investigation of loess shoulder-line. In: Geoinformatics 2007: Geospatial Information Science (Vol. 6753, p. 67532E). International Society for Optics and Photonics.

  • Tang G A, Zhao M D, Li T W et al., 2003. Uncertainty of DEM extraction of ground slope in Loess Plateau. Acta Geographica Sinica, 58(6): 824–830. (in Chinese)

    Google Scholar 

  • Tang X M, Li T, Gao X M et al., 2018. Research on key technologies of precise InSAR surveying and mapping application using automatic SAR imaging. Acta Geodaetica et Cartographica Sinica, 47(6): 730–740. (in Chinese)

    Google Scholar 

  • Tao Y, 2011. Texture analysis based research on terrain morphology characteristics [D]. Nanjing: Nanjing Normal University. (in Chinese)

    Google Scholar 

  • Tarboton D G, Bras R L, Rodriguez-Iturbe I, 1991. On the extraction of channel networks from digital elevation data. Hydrological Processes, 5(1): 81–100.

    Article  Google Scholar 

  • Tinkler K J, 1985. A Short History of Geomorphology. London: Taylor & Francis.

    Google Scholar 

  • Uysal M, Toprak A S, Polat N, 2015. DEM generation with UAV photogrammetry and accuracy analysis in Sahitler hill. Measurement, 73: 539–543.

    Article  Google Scholar 

  • Walsh S J, Butler D R, Malanson G P, 1998. An overview of scale, pattern, process relationships in geomorphology: A remote sensing and GIS perspective. Geomorphology, 21(3/4): 183–205.

    Article  Google Scholar 

  • Wang C, Chen Z J, Yang Q K et al., 2012. Analysis on uncertainty of DEM derived watershed distributed slope length. Research of Soil and Water Conservation, 19(2): 15–18. (in Chinese)

    Google Scholar 

  • Wang J Y, Cui T J, Miao G Q, 2004. Digital elevation model and data structure. Hydrographic Surveying and Charting, 24(3): 1–4. (in Chinese)

    Google Scholar 

  • Wang N A, Zhao J D, Yu Y X et al., 2017. The gradually improving scientific research paradigm on quaternary glaciation in China: A review of the 4th Conference on Quaternary Glaciation and Environmental Variation in China. Journal of Glaciology and Geocryology, 39(5): 1029–1038. (in Chinese)

    Google Scholar 

  • Wang P F, Du J K, Feng X Z, 2007. Effect of sink filling on DEM uncertainty evaluation. Geography and Geo-Information Science, 23(1): 24–26. (in Chinese)

    Google Scholar 

  • Wang S J, Zhang X B, Bai X Y, 2015. An outline of karst geomorphology zoning in the karst areas of southern China. Mountain Research, 33(6): 641–648. (in Chinese)

    Google Scholar 

  • Wang Y G, Zhu C Q, Wang Z W, 2008. A surface model of Grid DEM based on Coons Surface. Acta Geodaetica et Cartographica Sinica, 37(2): 217–222. (in Chinese)

    Google Scholar 

  • Wilcock P R, Schmidt J C, Wolman M G et al., 2003. When models meet managers: Examples from geomorphology. Geophysical Monograph Series, 135: 41–50.

    Google Scholar 

  • Williams P W, Liu H, Song L H, 1990. Geomorphologic inheritance and development of tower karst. Progress in Geography, 9(1): 11–16.

    Google Scholar 

  • Wilson J P, 2018. Geomorphometry: Today and Tomorrow. Proceedings of Geomorphometry 2018, International Society of Geomorphometry.

  • Wilson J P, Gallant J C, 2000. Terrain Analysis: Principles and Applications. New York: John Wiley & Sons.

    Google Scholar 

  • Wood J, 1996. The geomorphological characterisation of digital elevation models [D]. Leicester: University of Leicester.

    Google Scholar 

  • Wu L, 2001. Geographic Information System: Principles, Methods and Applications. Beijing: Science Press.

    Google Scholar 

  • Wu L, Wang D M, Zhang Y, 2006. Research on the algorithms of the flow direction determination in ditches extraction based on grid DEM. Journal of Image and Graphics, 11(7): 998–1003. (in Chinese)

    Google Scholar 

  • Wu R, Wang L H, Tang G A, 2012. Terrain profile spectrum of China land border. Geography and Geo-Information Science, 28(5): 51–54, 2. (in Chinese)

    Google Scholar 

  • Xiong L Y, Tang G A, Li F Y et al., 2014. Modeling the evolution of loess-covered landforms in the Loess Plateau of China using a DEM of underground bedrock surface. Geomorphology, 209: 18–26.

    Article  Google Scholar 

  • Xiong L Y, Tang G A, Strobl J et al., 2016. Paleotopographic controls on loess deposition in the Loess Plateau of China. Earth Surface Processes & Landforms, 41: 1155–1168.

    Article  Google Scholar 

  • Xiong L Y, Tang G A, Zhu A X et al., 2017a. A peak-cluster assessment method for the identification of upland planation surfaces. International Journal of Geographical Information Science, 31(2): 387–404.

    Article  Google Scholar 

  • Xiong L Y, Tang G A, Zhu A X et al., 2017b. Paleotopographic controls on modern gully evolution in the loess landforms of China. Science China Earth Sciences, 60(3): 438–451.

    Article  Google Scholar 

  • Xiong L Y, Zhu A X, Zhang L et al., 2018. Drainage basin object-based method for regional-scale landform classification: A case study of loess area in China. Physical Geography, 39(6): 523–541.

    Google Scholar 

  • Yang B, Shi W, Li Q, 2005. An integrated TIN and Grid method for constructing multi-resolution digital terrain models. International Journal of Geographical Information Science, 19(10): 1019–1038.

    Article  Google Scholar 

  • Yang H J, Xu X, Li G S, 1989. The causal mechanism of Quaternary environmental changes in China. Quaternary Sciences, 9(2): 97–111.

    Google Scholar 

  • Yang Q K, Shi W J, Mcvicar T R et al., 2007. On constructing methods of hydrologically correct DEMs. Science of Soil and Water Conservation, 5(4): 1–6. (in Chinese)

    Google Scholar 

  • Yang X, Tang G A, Liu X J et al., 2009. Digital terrain analysis: Theory, method and application. Acta Geographica Sinica, 64(9): 1058–1070. (in Chinese)

    Google Scholar 

  • Yang X, Tang G A, Xiao C C et al., 2011. The scaling method of specific catchment area from DEMs. Journal of Geographical Sciences, 21(4): 689–704.

    Article  Google Scholar 

  • Yi R L, Chen J J, Deng M et al., 2009. An approach for the design of loess geomorphology ontology. Geography and Geo-Information Science, 25(2): 46–49.

    Google Scholar 

  • Yuan B Y, Guo Z T, Hao Q Z et al., 2007. Genozoic evolution of geomorphic and sedmentary environments in the Tianshui-Qin’an regions. Quaternary Sciences, 27(2): 161–171.

    Google Scholar 

  • Yue T X, Du Z P, Song D J et al., 2007. A new method of surface modeling and its application to DEM construction. Geomorphology, 91(1): 161–172.

    Article  Google Scholar 

  • Zeng S X, 1964. Some questions on the classification of relief types in Karst region in south China. Acta Geologica Sinica, 44(1): 119–131. (in Chinese)

    Google Scholar 

  • Zhang B P, Zhou C H, Chen S P, 2003. The geo-info-spectrum of montane altitudinal belts in China. Acta Geographica Sinca, 58(2): 163–171. (in Chinese)

    Google Scholar 

  • Zhang J M, You X, 2013. A prediction model of optimum statistical unit of relief. Journal of Remote Sensing, 17(4): 728–741. (in Chinese)

    Google Scholar 

  • Zhang W, 2011. Research of catchment profile spectrum on northern Shaanxi Loess Plateau, China [D]. Nanjing: Nanjing Normal University. (in Chinese)

    Google Scholar 

  • Zhang W, Li A N, 2012. Study on the optimal scale for calculating the relief amplitude in China based on DEM. Geography and Geo-Information Science, 28(4): 8–12. (in Chinese)

    Google Scholar 

  • Zhang X B, Wu J S, Wang Y C, 2006. Vertical geomorphologic zonation on the Northwest Sichuan Plateau and the effects of mountain hazards on the West Route of the South-to-North Water Diversion Project. Geographical Research, 25(4): 633–640. (in Chinese)

    Google Scholar 

  • Zhang Z C, Dong Z B, 2014. Research progress on aeolian geomorphology and morphodynamics. Advances in Earth Science, 29(6): 734–747. (in Chinese)

    Google Scholar 

  • Zhao J D, Wang J, Shen Y P, 2013. Distribution and features of glacial landforms in the Northwest of the Die Shan. Journal of Glaciology and Geocryology, 35(4): 841–847. (in Chinese)

    Google Scholar 

  • Zheng F L, Gao X T, 2003. Research progresses in hillslope soil erosion processes. Scientia Geographica Sinica, 23(2): 230–235. (in Chinese)

    Google Scholar 

  • Zhou C H, Tong C M, Zhang W J et al., 2014. The relationship between gully erosion and geomorphological factors in the hill and ravine region of the Loess Plateau. Journal of Geo-Information Science, 16(1): 87–94. (in Chinese)

    Google Scholar 

  • Zhou Q M, Liu X J, 2006. Digital Terrain Analysis. Beijing: Science Press.

    Google Scholar 

  • Zhou S Z, Li J J, 2003. New dating results of Quaternary glaciations in China. Journal of Glaciology and Geocryology, 25(6): 660–666. (in Chinese)

    Google Scholar 

  • Zhu C, Peng H, Li Z X et al., 2009. Age and genesis of the Danxia landform on Jianglang Mountain, Zhejiang Province. Journal of Geographical Sciences, 19(5): 615–630.

    Article  Google Scholar 

  • Zhu H C, Tang G A, Li Y S, 2015. The loess gully feature points cluster and its spatial structure model. Scientia Geographica Sinica, 35(9): 1170–1175. (in Chinese)

    Google Scholar 

  • Zhu S J, Tang G A, Li F Y, 2013. Spatial variation of hypsometric integral in the Loess Plateau based on DEM. Acta Geographica Sinica, 68(7): 921–932. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoan Tang.

Additional information

Foundation

National Natural Science Foundation of China, No.41930102, No.41971333, No.41771415

Xiong Liyang, Associate Professor, specialized in digital terrain analysis.

Tang Guoan, Professor, specialized in digital terrain analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, L., Tang, G., Yang, X. et al. Geomorphology-oriented digital terrain analysis: Progress and perspectives. J. Geogr. Sci. 31, 456–476 (2021). https://doi.org/10.1007/s11442-021-1853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-021-1853-9

Keywords

Navigation