Skip to main content
Log in

Extended social force model with a dynamic navigation field for bidirectional pedestrian flow

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

An extended social force model with a dynamic navigation field is proposed to study bidirectional pedestrian movement. The dynamic navigation field is introduced to describe the desired direction of pedestrian motion resulting from the decision-making processes of pedestrians. The macroscopic fundamental diagrams obtained using the extended model are validated against camera-based observations. Numerical results show that this extended model can reproduce collective phenomena in pedestrian traffic, such as dynamic multilane flow and stable separate-lane flow. Pedestrians’ path choice behavior significantly affects the probability of congestion and the number of self-organized lanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Phys. Rev. E 51(5), 4282 (1995)

    Article  ADS  Google Scholar 

  2. V. J. Blue and J. L. Adler, Cellular automata microsimulation for modeling bi-directional pedestrian walkways, Trans. Res. Part B 35(3), 293 (2001)

    Article  Google Scholar 

  3. W. H. K. Lam, J. Y. S. Lee, and C. Y. Cheung, A study of the bidirectional pedestrian flow characteristics at Hong Kong signalized crosswalk facilities, Transpor. 29(2), 169 (2002)

    Article  Google Scholar 

  4. R. L. Hughes, A continuum theory for the flow of pedestrians, Trans. Res. Part B 36(6), 507 (2002)

    Article  Google Scholar 

  5. M. Isobe, T. Adachi, and T. Nagatani, Experiment and simulation of pedestrian counter flow, Physica A 336(3–4), 638 (2004)

    Article  ADS  Google Scholar 

  6. T. I. Lakoba, D. J. Kaup, and N. M. Finkelstein, Modifications of the Helbing–Molnár–Farkas–Vicsek social force model for pedestrian evolution, Simulation 81(5), 339 (2005)

    Article  Google Scholar 

  7. S. C. Wong, W. L. Leung, S. H. Chan, W. H. K. Lam, N. H. C. Yung, C. Y. Liu, and P. Zhang, Bidirectional pedestrian stream model with oblique intersecting angle, J. Transp. Eng. 136(3), 234 (2010)

    Article  Google Scholar 

  8. D. Helbing, L. Buzna, A. Johansson, and T. Werner, Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions, Transport. Sci. 39(1), 1 (2005)

    Article  Google Scholar 

  9. T. Kretz, A. Grunebohm, M. Kaufman, F. Mazur, and M. Schreckenberg, Experimental study of pedestrian counter flow in a corridor, J. Stat. Mech. 2006(10), P10001 (2006)

    Article  Google Scholar 

  10. J. Zhang, W. Klingsch, A. Schadschneider, and A. Seyfried, Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram, J. Stat. Mech. P02002 (2012)

    Google Scholar 

  11. J. Zhang and A. Seyfried, Comparison of intersecting pedestrian flows based on experiments, Physica A 405, 316 (2014)

    Article  ADS  Google Scholar 

  12. M. Saberi, K. Aghabayk, and A. Sobhani, Spatial fluctuations of pedestrian velocities in bidirectional streams: exploring the effects of self-organization, Physica A 434, 120 (2015)

    Article  ADS  Google Scholar 

  13. D. Helbing and T. Vicsek, Optimal self-organization, New J. Phys. 13, 1 (1999)

    MATH  Google Scholar 

  14. T. Morbiato, R. Vitaliani, and A. Saetta, Numerical analysis of a synchronization phenomenon: Pedestrianstructure interaction, Computers & Structures 89(17–18), 1649 (2011)

    Article  Google Scholar 

  15. C. Q. Wang, A. Pumir, N. B. Garnier, and Z. H. Liu, Explosive synchronization enhances selectivity: Example of the cochlea, Front. Phys. 12(5), 128901 (2017)

    Article  Google Scholar 

  16. S. F. Ma, H. J. Bi, Y. Zou, Z. H. Liu, and S. G. Guan, Shuttle-run synchronization in mobile ad hoc networks, Front. Phys. 10(3), 100505 (2015)

    Google Scholar 

  17. F. Zanlungo, T. Ikeda, and T. Kanda, Social force model with explicit collision prediction, Europhys. Lett. 93(6), 68005 (2011)

    Article  ADS  Google Scholar 

  18. G. Flötteröd and G. Lámmel, Bidirectional pedestrian fundamental diagram, Trans. Res. Part B 71, 194 (2015)

    Article  Google Scholar 

  19. T. Xiong, P. Zhang, S. C. Wong, C. W. Shu, and M. P. Zhang, A macroscopic approach to the lane formation phenomenon in pedestrian counterflow, Chin. Phys. Lett. 28(10), 108901 (2011)

    Article  ADS  Google Scholar 

  20. Y. Q. Jiang, S. C. Wong, P. Zhang, R. X. Liu, Y. L. Duan, and K. Choi, Numerical simulation of a continuum model for bi-directional pedestrian flow, Appl. Math. Comput. 218, 6135 (2012)

    MathSciNet  MATH  Google Scholar 

  21. S. P. Hoogendoorn, F. L. M. van Wageningen-Kessels, W. Daamen, and D. C. Duives, Continuum modelling of pedestrian flows: From microscopic principles to selforganised macroscopic phenomena, Physica A 416, 684 (2014)

    Article  ADS  Google Scholar 

  22. Y. Q. Jiang, S. G. Zhou, and F. B. Tian, A higherorder macroscopic model for bi-direction pedestrian flow, Physica A 425, 69 (2015)

    Article  MathSciNet  Google Scholar 

  23. Y. Q. Jiang, S. G. Zhou, and F. B. Tian, Macroscopic pedestrian flow model with degrading spatial information, J. Comput. Sci. 10, 36 (2015)

    Article  Google Scholar 

  24. N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev. 53(3), 409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Bellomo and L. Gibelli, Toward a mathematical theory of behavioral social dynamics for pedestrian crowds, Math. Models Methods Appl. Sci. 25(13), 2417 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Helbing, I. Farkas, and T. Vicsek, Simulating dynamical features of escape panic, Nature 407(6803), 487 (2000)

    Article  ADS  Google Scholar 

  27. X. X. Yang, W. Daamen, S. P. Hoogendoorn, Y. Chen, and H. R. Dong, Breakdown phenomenon study in the bidirectional pedestrian flow, Transpor. Res. Proc. 2, 456 (2014)

    Article  Google Scholar 

  28. R. Y. Guo, Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck, Physica A 415, 428 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  29. L. Hou, J. G. Liu, X. Pan, and B. H. Wang, A social force evacuation model with the leadership effect, Physica A 400, 93 (2014)

    Article  ADS  Google Scholar 

  30. T. Korecki, D. Palka, and J. Was, Adaptation of social force model for simulation of downhill skiing, J. Comput. Sci. 16, 29 (2016)

    Article  MathSciNet  Google Scholar 

  31. W. G. Weng, T. Chen, H. Y. Yuan, and W. C. Fan, Cellular automaton simulation of pedestrian counter flow with different walk velocities, Phys. Rev. E 74(3), 036102 (2006)

    Article  ADS  Google Scholar 

  32. X. X. Jian, S. C. Wong, P. Zhang, K. Choi, H. Li, and X. N. Zhang, Perceived cost potential field cellular automata model with an aggregated force field for pedestrian dynamics, Trans. Res. Part C. 42, 200 (2014)

    Article  Google Scholar 

  33. Y. Tajima, K. Takimoto, and T. Nagatani, Pattern formation and jamming transition in pedestrian counter flow, Physica A 313(3–4), 709 (2002)

    Article  ADS  MATH  Google Scholar 

  34. R. Nagai and T. Nagatani, Jamming transition in counter flow of slender particles on square lattice, Physica A 366, 503 (2006)

    Article  ADS  Google Scholar 

  35. L. B. Fu, W. G. Song, W. Lv, X. D. Liu, and S. M. Lo, Multi-grid simulation of counter flow pedestrian dynamics with emotion propagation, Simul. Model. Pract. Theory 60, 1 (2016)

    Article  Google Scholar 

  36. D. R. Parisi and C. O. Dorso, Morphological and dynamical aspects of the room evacuation process, Physica A 385(1), 343 (2007)

    Article  ADS  Google Scholar 

  37. D. R. Parisi, M. Gilman, and H. Moldovan, A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions, Physica A 388(17), 3600 (2009)

    Article  ADS  Google Scholar 

  38. J. Kwak, H. H. Jo, T. Luttinen, and I. Kosonen, Collective dynamics of pedestrians interacting with attractions, Phys. Rev. E 88(6), 062810 (2013)

    Article  ADS  Google Scholar 

  39. T. Kretz, A. Grosse, S. Hengst, L. Kautzsch, A. Pohlmann, and P. Vortisch, Quickest paths in simulations of pedestrians, Advances in Complex Systems 14(5), 733 (2011)

    Article  Google Scholar 

  40. I. Karamouzas, B. Skinner, and S. J. Guy, Universal power law governing pedestrian interactions, Phys. Rev. Lett. 113(23), 238701 (2014)

    Article  ADS  Google Scholar 

  41. J. Wahle, A. L. C. Bazzan, F. Klügl, and M. Schreckenberg, Decision dynamics in a traffic scenario, Physica A 287(3–4), 669 (2000)

    Article  ADS  MATH  Google Scholar 

  42. W. X. Wang, B. H. Wang, W. C. Zheng, C. Y. Yin, and T. Zhou, Advanced information feedback in intelligent traffic systems, Phys. Rev. E 72(6), 066702 (2005)

    Article  ADS  Google Scholar 

  43. B. K. Chen, X. Y. Sun, H. Wei, C. F. Dong, and B. H. Wang, Piecewise function feedback strategy in intelligent traffic systems with a speed limit bottleneck, Int. J. Mod. Phys. C 22(08), 849 (2011)

    Article  ADS  MATH  Google Scholar 

  44. B. K. Chen, C. F. Dong, Y. K. Liu, W. Tong, W. Y. Zhang, J. Liu, and B. H. Wang, Real-time information feedback based on a sharp decay weighted function, Comput. Phys. Commun. 183(10), 2081 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  45. B. K. Chen, W. Tong, W. Y. Zhang, X. Y. Sun, and B. H. Wang, Flux information feedback strategy in intelligent traffic systems, Europhys. Lett. 97(1), 14001 (2012)

    Article  ADS  Google Scholar 

  46. B. K. Chen, Y. B. Xie, W. Tong, C. F. Dong, D. M. Shi, and B. H. Wang, A comprehensive study of advanced information feedbacks in real-time intelligent traffic systems, Physica A 391(8), 2730 (2012)

    Article  ADS  Google Scholar 

  47. B. K. Chen, D. Z. W. Wang, Y. C. Gao, K. Zhang, L. X. Miao, and B. H. Wang, Effects of traffic lights for Manhattan-like urban traffic network in intelligent transportation systems, Transportmetrica B

  48. Y. T. Zhang, H. K. Zhao, and J. Qian, High order fast sweeping methods for static Hamilton Jacobi equations, J. Sci. Comput. 29(1), 25 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11202175, 11275186, 91024026, and FOM2014OF001), the Research Foundation of Southwest University of Science and Technology (No. 10zx7137), and a Singapore Ministry of Education Research Grant (Grant No. MOE 2013-T2-2-033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Qun Jiang, Bo-Kui Chen or Bing-Hong Wang.

Additional information

These authors contributed equally to this work.

arXiv: 1705.03569.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, YQ., Chen, BK., Wang, BH. et al. Extended social force model with a dynamic navigation field for bidirectional pedestrian flow. Front. Phys. 12, 124502 (2017). https://doi.org/10.1007/s11467-017-0689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0689-3

Keywords

Navigation