Skip to main content
Log in

Generic security analysis framework for quantum secure direct communication

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Quantum secure direct communication provides a direct means of conveying secret information via quantum states among legitimate users. The past two decades have witnessed its great strides both theoretically and experimentally. However, the security analysis of it still stays in its infant. Some practical problems in this field to be solved urgently, such as detector efficiency mismatch, side-channel effect and source imperfection, are propelling the birth of a more impeccable solution. In this paper, we establish a new framework of the security analysis driven by numerics where all the practical problems may be taken into account naturally. We apply this framework to several variations of the DL04 protocol considering real-world experimental conditions. Also, we propose two optimizing methods to process the numerical part of the framework so as to meet different requirements in practice. With these properties considered, we predict the robust framework would open up a broad avenue of the development in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.-L. Long and X.-S. Liu, Theoretically efficient high-capacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  2. G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China 2(3), 251 (2007)

    Article  ADS  Google Scholar 

  3. F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block, Phys. Rev. A 68(5), 042317 (2003)

    Article  ADS  Google Scholar 

  4. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Quantum secure direct communication with highdimension quantum superdense coding, Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  5. F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  6. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs, Phys. Lett. A 359(5), 359 (2006)

    Article  ADS  MATH  Google Scholar 

  7. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Economical quantum secure direct communication network with single photons, Chin. Phys. 16(12), 3553 (2007)

    Article  Google Scholar 

  8. Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, and L. Hanzo, Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 63(3), 230362 (2020)

    Article  ADS  Google Scholar 

  9. P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, and G. L. Long, Measurement-device-independent quantum communication without encryption, Sci. Bull. 63(20), 1345 (2018)

    Article  Google Scholar 

  10. Z. Gao, T. Li, and Z. Li, Long-distance measurement-device-independent quantum secure direct communication, EPL 125(4), 40004 (2019)

    Article  ADS  Google Scholar 

  11. Z. K. Zou, L. Zhou, W. Zhong, and Y. B. Sheng, Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photons, EPL 131(4), 40005 (2020)

    Article  ADS  Google Scholar 

  12. X. D. Wu, L. Zhou, W. Zhong, and Y. B. Sheng, High-capacity measurement-device-independent quantum secure direct communication, Quantum Inform. Process. 19(4), 354 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. L. Zhou, Y. B. Sheng, and G. L. Long, Device-independent quantum secure direct communication against collective attacks, Sci. Bull. 65(1), 12 (2020)

    Article  Google Scholar 

  14. J. H. Shapiro, Z. Zhang, and F. N. Wong, Secure communication via quantum illumination, Quantum Inform. Process. 13(1), 2171 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. D. J. Lum, J. C. Howell, M. S. Allman, T. Gerrits, V. B. Verma, S. W. Nam, C. Lupo, and S. Lloyd, Quantum enigma machine: Experimentally demonstrating quantum data locking, Phys. Rev. A 94(2), 022315 (2016)

    Article  ADS  Google Scholar 

  16. J. H. Shapiro, D. M. Boroson, P. B. Dixon, M. E. Grein, and S. A. Hamilton, Quantum low probability of intercept, J. Opt. Soc. Am. B 36(3), B41 (2019)

    Article  Google Scholar 

  17. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144 (2016)

    Article  Google Scholar 

  18. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  19. F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Experimental long-distance quantum secure direct communication, Sci. Bull. 62(22), 1519 (2017)

    Article  Google Scholar 

  20. D. Pan, Z. Lin, J. Wu, H. Zhang, Z. Sun, D. Ruan, L. Yin, and G. Long, Experimental free-space quantum secure direct communication and its security analysis, Photon. Res. 8(9), 1522 (2020)

    Article  Google Scholar 

  21. S. Pirandola, S. L. Braunstein, S. Lloyd, and S. Mancini, Confidential direct communications: A quantum approach using continuous variables, IEEE J. Sel. Top. Quantum Electron. 15(6), 1570 (2009)

    Article  ADS  Google Scholar 

  22. C. Liu, K. Pang, Z. Zhao, P. Liao, R. Zhang, H. Song, Y. Cao, J. Du, L. Li, H. Song, Y. Ren, G. Xie, Y. Zhao, J. Zhao, S. M. H. Rafsanjani, A.N. Willner, J. H. Shapiro, R. W. Boyd, M. Tur, and A. E. Willner, Single-end adaptive optics compensation for emulated turbulence in a bidirectional 10-Mbit/s per channel free-space quantum communication link using orbital-angular-momentum encoding, Research 2019, 8326701 (2019)

    Article  Google Scholar 

  23. N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada, and S. Lloyd, Continuous-variable quantum neural networks, Phys. Rev. Research 1(3), 033063 (2019)

    Article  ADS  Google Scholar 

  24. C. Q. Hu, J. Gao, L. F. Qiao, R. J. Ren, Z. Cao, Z. Q. Yan, Z. Q. Jiao, H. Tang, Z. H. Ma, and X. M. Jin, Experimental test of tracking the king problem, Research 2019, 3474305 (2019)

    Article  ADS  Google Scholar 

  25. R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. L. Long, Implementation and security analysis of practical quantum secure direct communication, Light Sci. Appl. 8(1), 22 (2019)

    Article  ADS  Google Scholar 

  26. H. Lu, C. H. F. Fung, X. Ma, and Q. Y. Cai, Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel, Phys. Rev. A 84(4), 042344 (2011)

    Article  ADS  Google Scholar 

  27. C. I. Henao and R. M. Serra, Practical security analysis of two-way quantum-key-distribution protocols based on nonorthogonal states, Phys. Rev. A 92(5), 052317 (2015)

    Article  ADS  Google Scholar 

  28. J. Wu, Z. Lin, L. Yin, and G. L. Long, Security of quantum secure direct communication based on Wyner’s wiretap channel theory, Quantum Engineering 1(4), e26 (2019)

    Article  Google Scholar 

  29. P. J. Coles, E. M. Metodiev, and N. Lütkenhaus, Numerical approach for unstructured quantum key distribution, Nat. Commun. 7(1), 11712 (2016)

    Article  ADS  Google Scholar 

  30. A. Winick, N. Lütkenhaus, and P. J. Coles, Reliable numerical key rates for quantum key distribution, Quantum 2, 77 (2018)

    Article  Google Scholar 

  31. L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)

    Article  ADS  Google Scholar 

  32. Z. Cao, Z. Zhang, H. K. Lo, and X. Ma, Discrete-phaserandomized coherent state source and its application in quantum key distribution, New J. Phys. 17(5), 053014 (2015)

    Article  ADS  MATH  Google Scholar 

  33. C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum cryptography without Bell’s theorem, Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A. D. Wyner, The wire-tap channel, Bell Sys. Tech. J. 54(8), 1355 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Ribordy, J. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, Automated “plug & play” quantum key distribution, Electron. Lett. 34(22), 2116 (1998)

    Article  ADS  Google Scholar 

  36. P. J. Coles, L. Yu, V. Gheorghiu, and R. B. Griffiths, Information-theoretic treatment of tripartite systems and quantum channels, Phys. Rev. A 83(6), 062338 (2011)

    Article  ADS  Google Scholar 

  37. P. J. Coles, Unification of different views of decoherence and discord, Phys. Rev. A 85(4), 042103 (2012)

    Article  ADS  Google Scholar 

  38. S. Watanabe, R. Matsumoto, and T. Uyematsu, Tomography increases key rates of quantum-key-distribution protocols, Phys. Rev. A 78(4), 042316 (2008)

    Article  ADS  Google Scholar 

  39. E. Bolduc, G. C. Knee, E. M. Gauger, and J. Leach, Projected gradient descent algorithms for quantum state tomography, npj Quantum Inf. 3(1), 1 (2017)

    Article  Google Scholar 

  40. I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initialization and momentum in deep learning, in: International conference on machine learning, 2013, p. 1139

  41. M. Jaggi, Revisiting Frank-Wolfe: Projection-free sparse convex optimization, in: Proceedings of the 30th international conference on machine learning, CONF, 2013, p. 427

  42. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination, Nat. Photonics 4(10), 686 (2010)

    Article  ADS  Google Scholar 

  43. S. Sajeed, P. Chaiwongkhot, J. P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch, Phys. Rev. A 91(6), 062301 (2015)

    Article  ADS  Google Scholar 

  44. J. Lin, T. Upadhyaya, and N. Lütkenhaus, Asymptotic security analysis of discrete-modulated continuous variable quantum key distribution, Phys. Rev. X 9(4), 041064 (2019)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Jiawei Wu for his generous providing of the comparison data in Fig. 3 and thank Jie Lin for the help of the numerical techniques. This work was supported by the National Key Research and Development Program of China under Grant No. 2017YFA0303700, the Key Research and Development Program of Guangdong province under Grant No. 2018B030325002, the National Natural Science Foundation of China under Grant No. 11974205, and Beijing Advanced Innovation Center for Future Chip (ICFC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liu-Guo Yin or Gui-Lu Long.

Additional information

arXiv: 2011.14546. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-1025-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, ZD., Pan, D., Sun, Z. et al. Generic security analysis framework for quantum secure direct communication. Front. Phys. 16, 21503 (2021). https://doi.org/10.1007/s11467-020-1025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1025-x

Keywords

Navigation