Skip to main content
Log in

The Study of Tunable Local Surface Plasmon Resonances on Au-Ag and Ag-Au Core-Shell Alloy Nanostructure Particles With DDA Method

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The local surface plasmon resonances (LSPR) of bimetallic Au-Ag core-shell nanostructure particles are studied using discrete-dipole approximation (DDA) method and plasmon hybridization theory. It is found that LSPR is sensitive to the surrounding medium refractive index, showing a distinct redshift with increasing the surrounding medium refractive index. Au-Ag core-shell nanostructure exhibits a strong coupling between the core and shell plasmon resonance modes. The coupled resonance mode wavelengths show dependence on the layer thickness and the composition of core and shell metal. LSPR can be tuned over an extended wavelength range by adjusting the ratio of core to shell. The lower energy mode ω of Au-Ag core-shell nanoparticle shows a redshift with increasing Ag shell thickness or Au core radius, while the higher energy mode ω + shows the opposite behaviors. In addition, Ag-Au core-shell nanostructure compound particles are also studied with the same method, whose properties are different from that of Au-Ag core-shells. For the sake of clarity, the wavelength shifts of LSPR are plotted as functions of surrounding media refractive index, core radius, shell thickness, and core-shell ratio with figures of merits (FOM). The underlying mechanisms are analyzed with the plasmon hybridization theory and phase retardation effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nie S, Enmory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced. Science 275:1102

    Article  CAS  Google Scholar 

  2. Warnes WL, Dereux A, Bobesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824

    Article  Google Scholar 

  3. Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19:3771

  4. Maier SA (2007) Plasmonics: fundamentals and application. Springer

  5. Novotny L, Hecht B (2006) Principle of nano-optics. Cambridge University Press

  6. Shuford KL, Ratner MA, Schatz GC (2005) Multipolar excitation in triangular nanoprisms. J Chem Phys 123:114713

    Article  Google Scholar 

  7. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668

  8. Ma YW, Zh WW, Zhang LH, Zhang J, Jian GS, Pan Sh (2013) Theoretical study of the local surface plasmon resonance properties of silver nanosphere clusters. Plasmonics 8:1351

    Article  CAS  Google Scholar 

  9. Aubry A, Lei DY, Maier SA, Pendry JB (2010) Interaction between plasmonic nanoparticles revisited with transformation optics. Phys Rev Lett 105:233901

    Article  Google Scholar 

  10. Alaverdyan Y, Seplveda B, Eurenius L, Olsson E, Kall M (2007) Optical antennas based on coupled nanoholes in thin metal films. Nature Phys 3:884

    Article  CAS  Google Scholar 

  11. Bruzzzone S, Arrighini GP, Guidotti c (2003) Theoretical study of the optical absorption behavior of Au-Ag core-shell nanoparticles. Master Sci Eng C 23:965

    Article  Google Scholar 

  12. Moskovits M, Srnova-Sloufova I, Vlckova B (2002) Bimetallic Ag-Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J Chem Phys 116:10435

    Article  CAS  Google Scholar 

  13. Chaudhuri RG, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373

    Article  Google Scholar 

  14. Wu DJ, Liu XJ (2010) Optimization of bimetallic gold and silver alloy nanoshell for bimedical applications in vivo. App Phys Lett 97:061904

    Article  Google Scholar 

  15. Wang C, Peng S, Chan R, Sun SH (2009) Synthesis of AuAg alloy nanoparticles from core/shell structured Ag/Au. Small 5:567

    Article  CAS  Google Scholar 

  16. Bachelier G, Russier-Antoine I, Benichou E, Jonin C (2008) Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys Rev Lett 110:19740

    Google Scholar 

  17. Zhu J, Zhao JW, Li JJ (2010) Location-depeendent local field enhancement along the surface of metal-dielectric core-shell nanostructure. Plasmonics 311:5

    Google Scholar 

  18. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491

    Article  Google Scholar 

  19. Gresho PM, Sani RL (2000) Incompressible flow and finite element method. Wiley, New York

    Google Scholar 

  20. Taflove A (2000) Computational electrodynamics: the finite difference time domain method. Artech House, Norwood

    Google Scholar 

  21. DDSCAT7.2 arXiv:1202.3424

  22. Purcell EM, Pennypacker CR (1973) The discrete-dipole approximation and its application to inerstellar graphite grains. Astrophys 186:705

    Article  Google Scholar 

  23. Bohren CF, Huffman DR (2000) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  24. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 12:4370

    Article  Google Scholar 

  25. Kreibig U., Vollmer M (1995) Optical properties of metal clusters. Springer Ser.Mater.Sci, vol 25. Springer, Berlin

    Book  Google Scholar 

  26. Prodan E, Radbloff C, Halas NJ, Nordander P (2003) A hybridization model for the plasmon reponse of complex nanostructures. Science 302:419

    Article  CAS  Google Scholar 

  27. Prodan E, Nordander P (2004) Plamon hybridization in spherical nanoparticels. J Chem Phys 120:5444

    Article  CAS  Google Scholar 

  28. Pea-Rodrłguez O, Pal U, Rodrłguez-Iglesias V, et al. (2011) Configuring Au and Ag nanorods for sensing applications. J Opt Soc Am B 4:714–720

    Article  Google Scholar 

  29. Pea-Rodrłguez O, Rodrłguez-Iglesias V, Pal U (2011) Au@Ag core-shell nanoparticles: efficient all-plasmonics Fano-resonance generators. Nanosclae 3:3609

    Article  Google Scholar 

  30. Mulvaney P, Giersig M, Henglein A (1993) Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles. J Phys Chem 97:7061

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support from the Anhui Provincial Natural Science Foundation (1308085QA19, 1408085QA15), the Key Scientific Research Foundation of Anhui Provincial Education Department under grant nos. (KJ2013A180, KJ2012B087, and KJ2011Z234), and the Young Foundation of AnQing Normal University (KJ201313 and KJ201008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Wan Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YW., Zhang, LH., Wu, ZW. et al. The Study of Tunable Local Surface Plasmon Resonances on Au-Ag and Ag-Au Core-Shell Alloy Nanostructure Particles With DDA Method. Plasmonics 10, 1791–1800 (2015). https://doi.org/10.1007/s11468-015-9997-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9997-z

Keywords

Navigation