Skip to main content
Log in

Design of a High-Resolution Metal–Insulator–Metal Plasmonic Refractive Index Sensor Based on a Ring-Shaped Si Resonator

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a high-resolution refractive index sensor is proposed based on a novel metal–insulator–metal plasmonic topology. The structure is based on a Si nano-ring located inside a circular cavity. It acts as an optical notch filter with a quality factor equal to 269. The proposed filter topology is numerically simulated using the finite difference time domain method. It is shown that the proposed filter can also act as a refractive index sensor with a sensitivity of 636 nm/RIU and a fairly high figure of merit (FoM) equal to 211.3 RIU−1. It is shown that the sensor can easily detect a refractive index change of ± 0.001 for dielectrics whose refractive index is between 1 and 1.2. For the refractive index range of 1.33 to 1.52, the maximum FoM of the sensor is 191 RIU−1. The simplicity of the design and its high resolution are the two main features of the proposed sensor which make it a good candidate for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Khani S, Danaie M, Rezaei P (2018) Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt Commun 420:147–156

    CAS  Google Scholar 

  2. Khani S, Danaie M, Rezaei P (2019) Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides. Plasmonics 14(1):53–62

    Google Scholar 

  3. Nozhat N, Granpayeh N (2011) Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits. Opt Commun 284(13):3449–3455

    CAS  Google Scholar 

  4. Rakhshani MR, Mansouri-Birjandi MA (2016) Dual wavelength demultiplexer based on metal–insulator–metal plasmonic circular ring resonators. J Mod Opt 63(11):1078–1086

    CAS  Google Scholar 

  5. Danaie M, Geravand A (2018) Design of low-cross-talk metal–insulator–metal plasmonic waveguide intersections based on proposed cross-shaped resonators. J Nanophotonics 12(4):046009

    Google Scholar 

  6. Khani S, Danaie M, Rezaei P (2018) Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt Eng 57(10):107102

    Google Scholar 

  7. Taheri AN, Kaatuzian H (2014) Design and simulation of a nanoscale electro-plasmonic 1× 2 switch based on asymmetric metal–insulator–metal stub filters. Appl Opt 53(28):6546–6553

    PubMed  Google Scholar 

  8. Taheri AN, Kaatuzian H (2015) Numerical investigation of a nano-scale electro-plasmonic switch based on metal-insulator-metal stub filter. Opt Quant Electron 47(2):159–168

    CAS  Google Scholar 

  9. Ghadrdan M, Mansouri-Birjandi MA (2018) Design and implementation of optical switches based on nonlinear plasmonic ring resonators: circular, square and octagon. Photonics Nanostruct Fundam Appl 29:15–21

    Google Scholar 

  10. Ghadrdan M, Mansouri-Birjandi MA (2017) Low-threshold photonic crystal all-optical switch using plasmonic nanowires placed in nonlinear resonator structure. J Nanophotonics 11(3):036017

    Google Scholar 

  11. Lee Y, Kim SJ, Park H, Lee B (2017) Metamaterials and metasurfaces for sensor applications. Sensors 17(8):1726

    PubMed Central  Google Scholar 

  12. Livani AM, Kaatuzian H (2015) Design and simulation of an electrically pumped Schottky-junction-based plasmonic amplifier. Appl Opt 54(9):2164–2173

    CAS  PubMed  Google Scholar 

  13. Livani AM, Kaatuzian H (2015) Analysis and simulation of nonlinearity and effects of spontaneous emission in Schottky–junction–based plasmonic amplifiers. Appl Opt 54(19):6103–6110

    CAS  PubMed  Google Scholar 

  14. Danaie M, Kiani B (2018) Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photonics Nanostruct Fundam Appl 31:89–98

    Google Scholar 

  15. Dinish US, Balasundaram G, Chang YT, Olivo M (2014) Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J Biophotonics 7(11–12):956–965

    CAS  PubMed  Google Scholar 

  16. Farmani A (2019) Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the nearinfrared range. JOSA B 36(2):401–407

    CAS  Google Scholar 

  17. Sharma AK (2013) Plasmonic biosensor for detection of hemoglobin concentration in human blood: design considerations. J Appl Phys 114(4):044701

    Google Scholar 

  18. Ebrahimy MN, Moghaddam AB, Andalib A, Naziri M, Ronagh N (2015) Nanoscale biosensor based on silicon photonic cavity for home healthcare diagnostic application. Int J Nanosci 14(05n06):1550026

    CAS  Google Scholar 

  19. Iadicicco A, Cusano A, Cutolo A, Bernini R, Giordano M (2004) Thinned fiber Bragg gratings as high sensitivity refractive index sensor. IEEE Photon Technol Lett 16(4):1149–1151

    Google Scholar 

  20. Liang W, Huang Y, Xu Y, Lee RK, Yariv A (2005) Highly sensitive fiber Bragg grating refractive index sensors. Appl Phys Lett 86(15):151122

    Google Scholar 

  21. Scullion MG, Krauss TF, Di Falco A (2013) Slotted photonic crystal sensors. Sensors 13(3):3675–3710

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Danaee E, Geravand A, Danaie M (2019) Wide-band low cross-talk photonic crystal waveguide intersections using self-collimation phenomenon. Opt Commun 431:216–228

    CAS  Google Scholar 

  23. Danaie M, Geravand A, Mohammadi S (2018) Photonic crystal double-coupled cavity waveguides and their application in design of slow-light delay lines. Photonics Nanostruct Fundam Appl 28:61–69

    Google Scholar 

  24. Geravand A, Danaie M, Mohammadi S (2019) All-optical photonic crystal memory cells based on cavities with a dual-argument hysteresis feature. Opt Commun 430:323–335

    CAS  Google Scholar 

  25. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2010) Biosensing with plasmonic nanosensors. In Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp 308–319

    Google Scholar 

  26. Danaie M, Attari AR, Mirsalehi MM, Naseh S (2008) Optimization of two dimensional photonic crystal waveguides for TM polarization. Opt Appl 38(4):643–655

    Google Scholar 

  27. Dideban A, Habibiyan H, Ghafoorifard H (2017) Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Physica E 87:77–83

    CAS  Google Scholar 

  28. Malmir K, Habibiyan H, Ghafoorifard H (2016) An ultrasensitive optical label-free polymeric biosensor based on concentric triple microring resonators with a central microdisk resonator. Opt Commun 365:150–156

    CAS  Google Scholar 

  29. Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh-Kashtiban M (2014) A new proposal for PCRR-based channel drop filter using elliptical rings. Physica E 56:211–215

    CAS  Google Scholar 

  30. Salimzadeh S, Alipour-Banaei H (2018) A novel proposal for all optical 3 to 8 decoder based on nonlinear ring resonators. J Mod Opt 65(17):2017–2024

    Google Scholar 

  31. Moradi M, Danaie M, Orouji AA (2018) Design and analysis of an optical full-adder based on nonlinear photonic crystal ring resonators. Optik 172:127–136

    CAS  Google Scholar 

  32. Chorsi HT, Lee Y, Alù A, Zhang JX (2017) Tunable plasmonic substrates with ultrahigh Q-factor resonances. Sci Rep 7(1):15985

    PubMed  PubMed Central  Google Scholar 

  33. Chen Z, Li H, Zhan S, Li B, He Z, Xu H, Zheng M (2016) Tunable high quality factor in two multimode plasmonic stubs waveguide. Sci Rep 6:24446

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Danaie M, Kaatuzian H (2010) Design of a photonic crystal differential phase comparator for a Mach–Zehnder switch. J Opt 13(1):015504

    Google Scholar 

  35. Xiao X, Xu H, Li X, Li Z, Chu T, Yu Y, Yu J (2013) High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt Express 21(4):4116–4125

    CAS  PubMed  Google Scholar 

  36. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73(3):035407

    Google Scholar 

  37. Pannipitiya A, Rukhlenko ID, Premaratne M, Hattori HT, Agrawal GP (2010) Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt Express 18(6):6191–6204

    CAS  PubMed  Google Scholar 

  38. Aspnes DE, Palik ED (1985) Handbook of optical constants of solids. Academic, Orlando, ISBN, 125444206(9780125444200), p 89

    Google Scholar 

  39. Kwon SH (2013) Deep subwavelength-scale metal–insulator–metal plasmonic disk cavities for refractive index sensors. IEEE Photonics J 5(1):4800107–4800107

    Google Scholar 

  40. Bahramipanah M, Abrishamian MS, Mirtaheri SA, Liu JM (2014) Ultracompact plasmonic loop–stub notch filter and sensor. Sensors Actuators B Chem 194:311–318

    CAS  Google Scholar 

  41. Ni B, Chen XY, Xiong DY, Liu H, Hua GH, Chang JH, Zhang JH, Zhou H (2015) Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Opt Quant Electron 47(6):1339–1346

    CAS  Google Scholar 

  42. Xie YY, Huang YX, Zhao WL, Xu WH, He C (2015) A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity. IEEE Photonics J 7(2):1–12

    Google Scholar 

  43. Yan SB, Luo L, Xue CY, Zhang ZD (2015) A refractive index sensor based on a metal-insulator-metal waveguide-coupled ring resonator. Sensors 15(11):29183–29191

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zafar R, Salim M (2015) Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sensors J 15(11):6313–6317

    CAS  Google Scholar 

  45. Zou S, Wang F, Liang R, Xiao L, Hu M (2015) A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review. IEEE Sensors J 15(2):646–650

    CAS  Google Scholar 

  46. Chen L, Liu Y, Yu Z, Wu D, Ma R, Zhang Y, Ye H (2016) Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity. Opt Express 24(9):9975–9983

    CAS  PubMed  Google Scholar 

  47. Chen F, Yao D (2016) Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide. Opt Commun 369:72–78

    CAS  Google Scholar 

  48. Rakhshani MR, Mansouri-Birjandi MA (2016) High-sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity. IEEE Sensors J 16(9):3041–3046

    CAS  Google Scholar 

  49. Wu T, Cao W (2016) A multifunction filter based on plasmonic waveguide with double-nanodisk-shaped resonators. Optik 127(20):8976–8982

    CAS  Google Scholar 

  50. Zhang Z, Luo L, Xue C, Zhang W, Yan S (2016) Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors 16(5):642

    PubMed Central  Google Scholar 

  51. Zhang X, Shao M, Zeng X (2016) High quality plasmonic sensors based on Fano resonances created through cascading double asymmetric cavities. Sensors 16(10):1730

    PubMed Central  Google Scholar 

  52. Akhavan A, Ghafoorifard H, Abdolhosseini S, Habibiyan H (2017) Plasmon-induced transparency based on a triangle cavity coupled with an ellipse-ring resonator. Appl Opt 56(34):9556–9563

    PubMed  Google Scholar 

  53. Mishra AK, Mishra SK, Singh AP (2018) Giant infrared sensitivity of surface plasmon resonance-based refractive index sensor. Plasmonics 13(4):1183–1190

    CAS  Google Scholar 

  54. Rakhshani MR, Mansouri-Birjandi MA (2017) Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application. Plasmonics 12(4):999–1006

    CAS  Google Scholar 

  55. Rakhshani MR, Mansouri-Birjandi MA (2017) High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sensors Actuators B Chem 249:168–176

    CAS  Google Scholar 

  56. Tang Y, Zhang Z, Wang R, Hai Z, Xue C, Zhang W, Yan S (2017) Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17(4):784

    PubMed Central  Google Scholar 

  57. Wu C, Ding H, Huang T, Wu X, Chen B, Ren K, Fu S (2018) Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators. Plasmonics 13(1):251–257

    CAS  Google Scholar 

  58. Akhavan A, Ghafoorifard H, Abdolhosseini S, Habibiyan H (2018) Metal–insulator–metal waveguide-coupled asymmetric resonators for sensing and slow light applications. IET Optoelectron 12:220–227

    Google Scholar 

  59. Ghorbani S, Dashti MA, Jabbari M (2018) Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring. Laser Phys 28(6):066208

    Google Scholar 

  60. Rakhshani MR, Mansouri-Birjandi MA (2018) Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection. IEEE Trans Nanotechnol 17(3):475–481

    CAS  Google Scholar 

  61. Rashed AR, Gudulluoglu B, Yun HW, Habib M, Boyaci IH, Hong SH, Ozbay E, Caglayan H (2018) Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits. Sci Rep 8(1):11457

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yi X, Tian J, Yang R (2018) Tunable Fano resonance in plasmonic MDM waveguide with a square type split-ring resonator. Optik 171:139–148

    CAS  Google Scholar 

  63. Zhang Z, Yang J, He X, Zhang J, Huang J, Chen D, Han Y (2018) Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18(1):116

    PubMed Central  Google Scholar 

  64. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(11):R37

    PubMed  Google Scholar 

  65. Tsenova V, Stoykova EV (2003) Refractive index measurement in human tissue samples. In 12th International School on Quantum Electronics: Laser Physics and Applications, vol 5226, pp 413–418. International Society for Optics and Photonics

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Danaie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danaie, M., Shahzadi, A. Design of a High-Resolution Metal–Insulator–Metal Plasmonic Refractive Index Sensor Based on a Ring-Shaped Si Resonator. Plasmonics 14, 1453–1465 (2019). https://doi.org/10.1007/s11468-019-00926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00926-9

Keywords

Navigation