Skip to main content
Log in

Multi-Band Terahertz Absorber at 0.11 THz Frequency Based on Ultra-Thin Metamaterial

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this letter, we design a terahertz (THz) multi-band absorber comprised of four square open/closed loops and a ring wall resonant metamaterial with a high absorption rate for TE and TM polarization. Based on resonant response of metamaterial, five different sizes of the metal rings could tune five absorption peaks to produce five-band absorbing performance in the frequency ranging from 0.1 to 1 THz. By comparing the absorber consisting of independent ring with multiple rings, the multi-band absorption could be demonstrated by increasing the number of metal rings. The simulation results are indicated that the multi-band absorbing of the THz absorber is independent of incident angle within a wide range. The design method of the absorber presented can not only provide a theoretical tool to perform diversity absorbing with multiple band and multi-absorption azimuth in terahertz communications, but also has potential for applications in THz imagers, detectors, sensors, and emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee DH, Ling K, Lim S, Baek CW (2015) Fabrication of polarization-insensitive, multi-resonant metamaterial absorber using wafer bonding of glass dielectric substrate[J]. Microelectron Eng 136:42–47. https://doi.org/10.1016/j.mee.2015.04.010

    Article  CAS  Google Scholar 

  2. Commandré M, Vial B, Tisserand S, Roux L, Dallaporta H, Bedu F, Demésy G, Nicolet A, Zolla F (2015) Design, fabrication and characterization of resonant metamaterial filters for infrared multispectral imaging[J]. Thin Solid Films 592:296–304. https://doi.org/10.1016/j.tsf.2015.04.026

    Article  CAS  Google Scholar 

  3. Li L, Yang Y, Liang C (2011) A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes[J]. J Appl Phys 110(6):063702–063702-5. https://doi.org/10.1063/1.3638118

    Article  CAS  Google Scholar 

  4. Booske JH (2008) Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa [J]. Physics of Plasmas 15(5):459–597. https://doi.org/10.1063/1.2838240

    Article  CAS  Google Scholar 

  5. Porterfield DW High-efficiency terahertz frequency triplers[C]// microwave symposium, 2007. IEEE/MTT-S Int 2007:337–340. https://doi.org/10.1109/mwsym.2007.380439

  6. Chow WW, Wanke MC, Lerttamrab M et al (2007) THz quantum cascade lasers for standoff molecule detection. Off Sci Res Inf Tech Rep. https://doi.org/10.2172/921751

  7. He M, Li J, Liu G (2012) Progress of terahertz active control functional devices[J]. J Electron Measurement & Instrument 26(7):567–576. https://doi.org/10.3724/SP.J.1187.2012.00567

    Article  Google Scholar 

  8. Zhang B, Lv L, He T et al (2015) Active terahertz device based on optically controlled organometal halide perovskite[J]. Appl Phys Lett 107(9):85_1. https://doi.org/10.1109/irmmw-thz.2016.7758658

    Article  Google Scholar 

  9. Liao Z, Liu S, Ma HF, Li C, Jin B, Cui TJ (2016) Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies[J]. Sci Rep 6(27596). https://doi.org/10.1038/srep27596

  10. Chen HT, Kersting R, Cho GC (2003) Terahertz imaging with nanometer resolution[J]. Appl Phys Lett 83(15):3009–3011. https://doi.org/10.1063/1.1616668

    Article  CAS  Google Scholar 

  11. Petre S, Randolph M (2005) Spectral analysis of signals (POD)[J]. Leber Magen Darm 13(2):57–63

    Google Scholar 

  12. Debus C, Bolivar P H (2007) Frequency selective surfaces for high-sensitivity terahertz sensors[C]// lasers and electro-optics, 2007. CLEO 2007. Conference on IEEE, 1–2. doi https://doi.org/10.1109/cleo.2007.4452943

  13. Liang C, Niu G, Chen X, Zhou Z, Yi Z, Ye X, Duan T, Yi Y, Xiao S (2019) Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance. Opt Commun 436:57–62. https://doi.org/10.1016/j.optcom.2018.11.083

    Article  CAS  Google Scholar 

  14. Cen C, Lin H, Huang J, Liang C, Chen X, Tang Y, Yi Z, Ye X, Liu J, Yi Y, Xiao S (2018) A tunable Plasmonic refractive index sensor with Nanoring-strip graphene arrays. Sensors 18(12):4489–4462. https://doi.org/10.3390/s18124489

    Article  CAS  Google Scholar 

  15. Cen C, Chen J, Liang C, Huang J, Chen X, Tang Y, Yi Z, Xu X, Yi Y, Xiao S (2018) Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays. Physica E Low Dimens Syst Nanostruct 103:93–98. https://doi.org/10.1016/j.physe.2018.05.033

    Article  CAS  Google Scholar 

  16. Krumbholz N, Gerlach K, Rutz F, Koch M, Piesiewicz R, Kürner T, Mittleman D (2006) Omnidirectional terahertz mirrors: a key element for future terahertz communication systems[J]. Appl Phys Lett 88(20):910. https://doi.org/10.1063/1.2205727

    Article  CAS  Google Scholar 

  17. Chao G, Shaobo Q, Pei Z et al (2011) Multiband terahertz metamaterial absorber[J]. Chin Phys B 20(1):622–626. https://doi.org/10.1088/1674-1056/20/1/017801

    Article  Google Scholar 

  18. Lu Y, Li J, Zhang S, Sun J, Yao JQ (2018) Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures[J]. Appl Opt 57(21):6269–6275. https://doi.org/10.1364/ao.57.006269

    Article  CAS  PubMed  Google Scholar 

  19. Wu T, Lai J, Wang S, Li X, Huang Y (2017) UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths.[J]. Appl Opt 56(21):5844–5848. https://doi.org/10.1364/ao.56.005844

    Article  CAS  PubMed  Google Scholar 

  20. Wen QY, Zhang HW, Xie YS, Yang QH, Liu YL (2009) Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J]. Appl Phys Lett 95(24):207402. https://doi.org/10.1063/1.3276072

    Article  CAS  Google Scholar 

  21. Pan W, Yu X, Zhang J, Zeng W (2016) A novel design of broadband terahertz metamaterial absorber based on nested circle rings[J]. IEEE Photon Technol Lett 28(21):2335–2338. https://doi.org/10.1109/lpt.2016.2593699

    Article  Google Scholar 

  22. Wang BX, Wang GZ (2017) New type design of the triple-band and five-band metamaterial absorbers at terahertz frequency[J]. Plasmonics 1–8. doi https://doi.org/10.1007/s11468-016-0491-z

    Article  Google Scholar 

  23. Meng HY, Wang LL, Zhai X, Liu GD, Xia SX (2017) A simple design of a multi-band terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap[J]. Plasmonics 13:1–6. https://doi.org/10.1007/s11468-017-0509-1

    Article  CAS  Google Scholar 

  24. Janneh M, De Marcellis A, Palange E et al (2018) Design of a metasurface-based dual-band terahertz perfect absorber with very high Q-factors for sensing applications[J]. Opt Commun 416:152–159. https://doi.org/10.1016/j.optcom.2018.02.013

    Article  CAS  Google Scholar 

  25. Huang M, Cheng Y, Cheng Z, Chen H, Mao X, Gong R (2018) Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle[J]. Opt Commun 415:194–201. https://doi.org/10.1016/j.optcom.2018.01.051

    Article  CAS  Google Scholar 

  26. Wang GZ, Wang BX (2015) Five-band terahertz metamaterial absorber based on a four-gap comb resonator[J]. J Lightwave Technol 33(24):5151–5156. https://doi.org/10.1109/jlt.2015.2497740

    Article  Google Scholar 

  27. Mulla B, Sabah C (2017) Multi-band metamaterial absorber topology for infrared frequency regime[J]. Physica E Low Dimens Syst Nanostruct 86:44–51. https://doi.org/10.1016/j.physe.2016.10.003

    Article  CAS  Google Scholar 

  28. Sabah C, Mulla B, Altan H, Ozyuzer L (2018) Cross-like terahertz metamaterial absorber for sensing applications[J]. Pramana 91(2):17. https://doi.org/10.1007/s12043-018-1591-4

    Article  CAS  Google Scholar 

  29. Gong B, Guo F, Zou W, Chen L, Song K, Zhao X (2017) New design of multi-band negative-index metamaterial and absorber at visible frequencies[J]. Mod Phys Lett B 31(24):77. https://doi.org/10.1142/s0217984917502864

    Article  Google Scholar 

  30. Meng T, Hu D, Zhu Q (2018) Design of a five-band terahertz perfect metamaterial absorber using two resonators[J]. Opt Commun 415:151–155. https://doi.org/10.1016/j.optcom.2018.01.048

    Article  CAS  Google Scholar 

  31. Bakshi SC, Mitra D, Minz L (2018) A compact design of multiband terahertz metamaterial absorber with frequency and polarization tunability[J]. Plasmonics 13(11):1–10. https://doi.org/10.1007/s11468-018-0698-2

    Article  Google Scholar 

  32. Liu Y, Xu SQ, Liu M, Hu XG, Duan YF, Yi L (2018) Tunable multi-band terahertz absorber based on a one-dimensional heterostructure containing semiconductor[J]. Optik 170:203–209. https://doi.org/10.1016/j.ijleo.2018.05.099

    Article  CAS  Google Scholar 

  33. Liu H, Zhao L, Dong S et al (2018) Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators[J]. Opt Express 26(10):12838–12851. https://doi.org/10.1364/oe.26.012838

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 61705200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiannan Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wu, Q. & Yan, S. Multi-Band Terahertz Absorber at 0.11 THz Frequency Based on Ultra-Thin Metamaterial. Plasmonics 14, 1303–1310 (2019). https://doi.org/10.1007/s11468-019-00936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00936-7

Keywords

Navigation