Skip to main content

Advertisement

Log in

Efficiency Enhancement of Ultra-thin CIGS Solar Cells Using Bandgap Grading and Embedding Au Plasmonic Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The objective of this study is to enhance the efficiency of copper indium gallium selenide (CIGS) solar cells. To accomplish that, composition grading of absorber layer was carried out by using SILVACO’s technology aided computer design (TCAD) ATLAS program. Results showed a meaningful improvement of output parameters including open-circuit voltage (Voc), short-circuit current (Isc), fill factor (FF), and power conversion efficiency (η). For further performance improvement of the cell, Au plasmonic scattering nanoparticles were loaded on the top of the ZnO window layer. Plasmonic nanoparticles can restrict, absorb, navigate, or scatter the incident light. By using the spherical Au nanoparticles, a very good increase in the light absorption in the cell over the reference planar CIGS solar cell was observed. The highest η = 19.01% was achieved for the designed ultra-thin bandgap-graded CIGS solar cell decorated by Au nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519

    Article  CAS  Google Scholar 

  2. Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, Powalla M (2016) Effects of heavy alkali elements in Cu (In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys Status Solidi (RRL) 10(8):583–586

    Article  CAS  Google Scholar 

  3. Lundberg O, Edoff M, Stolt L (2005) The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films 480–481:520–525

    Article  Google Scholar 

  4. Decock K, Khelifi S, Burgelman M (2011) Analytical versus numerical analysis of back grading in CIGS solar cells. Sol Energy Mater Sol Cells 95:1550–1554

    Article  CAS  Google Scholar 

  5. Bouloufa A, Djessas K, Zegadi A (2007) Numerical simulation of CuInxGa1-xSe2 solar cells by AMPS-1D. Thin Solid Films 515(15):6285–6287

    Article  CAS  Google Scholar 

  6. Huang C-H (2008) Effects of Ga content on Cu(In,Ga)Se2 solar cells studied by numerical modeling. J Phys Chem Solids 69:330–334

    Article  CAS  Google Scholar 

  7. Troviano M, Taretto K (2011) Analysis of internal quantum efficiency in double-graded bandgap solar cells including sub-bandgap absorption. Sol Energy Mater Sol Cells 95(3):821–828

    Article  CAS  Google Scholar 

  8. Murata M, Hironiwa D, Ashida N, Chantana J, AoyAui K, Kataoka N, Minemoto T (2014) Optimum bandgap profile analysis of Cu(In,Ga)Se2 solar cells with various defect densities by SCAPS. J Appl Phys 53:04ER14

    Article  Google Scholar 

  9. Hanna G, Jasenk A, Rau U, Schock H (2001) Influence of Ga-content on the bulk defect densities of Cu(In,Ga)Se2. Thin Solid Films 387(1):71–73

    Article  CAS  Google Scholar 

  10. Calvino-Casilda V, José López-Peinado A, María Martín-Aranda R, Pérez Mayoral E 2019, Nanocatalysis: applications and technologies, 1st Ed., CRC Press, https://doi.org/10.1201/9781315202990

  11. Shahine I, Jradi S, Beydoun N, Gaumet J-J, Akil S (2020) UV-generated hot electrons in Au-ZnO as robust way for plasmon-enhanced photoluminescence and photocatalysis reactions in metal-semiconductor nanomaterials. ChemPhotoChem. https://doi.org/10.1002/cptc.201900252

  12. Columbus D, (2014) “Design and optimization of copper indium gallium selenide solar cells for lightweight battlefield application” M.S. Thesis, Department of Electrical Engineering, Naval Postgraduate School, Monterey, CA

  13. Li J, Deng B, Zhu H, Guo F, You X, Shen K, Wan M, Mai Y (2018) Rear interface modification for efficient Cu(In,Ga)Se2 solar cells processed with metallic precursors and low-cost Se vapour. Sol Energy Mater Sol Cells 186:243–253

    Article  CAS  Google Scholar 

  14. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (version 45). Prog Photovolt Res Appl 23(1):1–9

    Article  Google Scholar 

  15. Sharbati S, Sites James R (2014) Impact of the band offset for n-Zn (O, S)/p-Cu(In,Ga)Se2 solar cells. IEEE J Photovolt 4:2

    Article  Google Scholar 

  16. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  17. Cen C, Chen Z, Xu D, Jiang L, Chen X, Yi Z, Wu P, Li G, Yi Y (2020) High quality factor, high sensitivity metamaterial graphene-perfect absorber based on critical coupling theory and impedance matching. Nanomaterials 10:95

    Article  CAS  Google Scholar 

  18. Cen C, Zhang Y, Chen X, Yang H, Yi Z, Yao W, Tang Y, Yi Y, Wang J, Wu P (2020) A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency. Physica E: Low-dimensional Systems and Nanostructures 117:113840

    Article  CAS  Google Scholar 

  19. Liang C, Yi Z, Chen X, Tang Y, Yi Y, Zhou Z, Wu X, Huang Z, Yi Y, Zhang G (2019) Dual-band infrared perfect absorber based on a Ag-dielectric-Ag multilayer films with nanoring grooves arrays. Plasmonics. https://doi.org/10.1007/s11468-019-01018-4

  20. Wang Y, Qin F, Yi Z, Chen X, Zhou Z, Yang H, Liao X, Tang Y, Yao W, Yi Y (2019) Effect of slit width on surface plasmon resonance. Results Physics 15:102711

    Article  Google Scholar 

  21. Rockstuhl C, Fahr S, Lederer F (2008) Absorption enhancement in solar cells by localized plasmon polaritons. J Appl Phys 104:123102. https://doi.org/10.1063/1.3037239

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdolahzadeh Ziabari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Royanian, S., Abdolahzadeh Ziabari, A. & Yousefi, R. Efficiency Enhancement of Ultra-thin CIGS Solar Cells Using Bandgap Grading and Embedding Au Plasmonic Nanoparticles. Plasmonics 15, 1173–1182 (2020). https://doi.org/10.1007/s11468-020-01138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01138-2

Keywords

Navigation