Skip to main content
Log in

Recent Advances of Efficient Design of Terahertz Quantum-Cascade Lasers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Terahertz (THz) quantum cascade lasers (QCLs) are electrically pumped and heterostructure based semiconductor laser sources with intersubband transitions of electrons in different layers of the quantum wells and barriers. The THz QCLs have high output power in THz region which make them important from application point of view. Recently intensive research has been carried out by researchers for obtaining efficient designs of THz sources. Most of the researchers have investigated the THz frequency range between 0.1 and 3 THz; however, the output power of the THz sources in the frequency range 3–5 THz is small because of transit time and resistance-capacitance effects. Nevertheless, the present review is focused for the development of efficient THz QCL sources in the frequency range from 3 to 5 THz where one of the major problem of thermal backfilling of the carriers has to be overcome by engineering the heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fleming JW (1974) High resolution submillimeter-wave Fourier-transform spectrometry of gases. IEEE Trans Microw Theory Tech 22:1023–1025

    Google Scholar 

  2. Sizov I, Rahman M, Gelmont B, Norton ML, Globus T (2013) Sub-THz spectroscopic characterization of vibrational modes in artificially designed DNA monocrystal. Chem Phys 425:121–125

    CAS  Google Scholar 

  3. Arora A, Luong TQ, Krüger M, Kim YJ, Nam CH, Manz A, Havenith M (2012) Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution. Analyst 137:575–579

    CAS  PubMed  Google Scholar 

  4. Wang K, Sun DW, Pu H (2017) Emerging non-destructive terahertz spectroscopic imaging technique: principle and applications in the agri-food industry. Trends Food Sci Technol 67:93–105

    CAS  Google Scholar 

  5. Auston DH, Smith PR (1983) Generation and detection of millimeter waves by picosecond photoconductivity. Appl Phys Lett 43:631–633

    CAS  Google Scholar 

  6. Smith PR, Auston DH, Nuss MC (1988) Subpicosecond photoconducting dipole antennas. IEEE J Quantum Electron 24:255–260

    Google Scholar 

  7. Madey JMJ (1971) Free electron laser. J Appl Phys 42:1906

    CAS  Google Scholar 

  8. Exter MV, Fattinger C, Grischkowsky D (1989) Terahertz time-domain spectroscopy of water vapor. Opt Lett 14:1128–1130

    CAS  PubMed  Google Scholar 

  9. Nahata A, Yadely JT, Heinz TF (2002) Two dimensional imaging of CW THz radiation using electro-optic detection. Appl Phys Lett 81:963–965

    CAS  Google Scholar 

  10. Federici JF, Mitrofanov M, Lee M, Hsu JWP, Brener I, Harel R, Wynn JD, Pfeiffer LN, West KW (2002) Terahertz near-field imaging. Phys Med Biol 47:3727–3734

    PubMed  Google Scholar 

  11. Bauer T, Siebert KJ, Roskos HG, et al. (2001) Terahertz dark-field imaging of biomedical tissue. Opt Exp 19:616–621

    Google Scholar 

  12. Woodward RM, Cole BE (2002) Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Opt Exp 47:3853–3863

    Google Scholar 

  13. Son JH, Oh SJ, Cheon H (2019) Potential clinical applications of terahertz radiation. J Appl Phys 125:190901–11

    Google Scholar 

  14. Verghese S, McIntosh KA, Calawa AS, Dinatale WF (1998) Generation and detection of coherent terahertz waves using two photomixers. Opt Exp 73:3824

    CAS  Google Scholar 

  15. Gregory IS, Tribe WR, Cole BE, Baker C, Evans MJ, Bradley IV (2004) Phase sensitive continuous-waveTHz imaging using diode lasers. Elec Lett 40:2

    Google Scholar 

  16. Karpowicz N, Zhong H, Xu J (2005) Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging Semicond. Sci Technol 20:S293–S299

    CAS  Google Scholar 

  17. Kohler A, Tredicucci A, Beltram F, Beere HE, Linfield EH, Davies AG, Ritchie DA, Iotti RC, Rossi F (2002) Terahertz semiconductor-heterostructure laser. Nature 417:156–159

    PubMed  Google Scholar 

  18. Kohler R, Tredicucci A, Beltram F (2002) High-intensity interminiband terahertz emission from chirped superlattices. App Phy Lett 80:1867–1869

    CAS  Google Scholar 

  19. Williams BS, Callebaut H, Kumar S, Hu Q (2003) 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation. App Phy Lett 82:1015–1017

    Google Scholar 

  20. Williams BS (2007) Terahertz quantum- cascade lasers. Nat Photon 1:517

    CAS  Google Scholar 

  21. Amanti MI, Scalari G, Terazzi R, Fischer M, Beck M, Faist J, Rudra A, Gallo P, Kapon E (2009) Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage. New J Phys 11:125022

    Google Scholar 

  22. Albo A, Flores YV, Hu Q, Reno JL (2019) Split-well direct-phonon terahertz quantum cascade lasers. Appl Phys Lett 114:191102

    Google Scholar 

  23. Dunn A, Poyser C, Dean P, Demić A, Valavanis A, Indjin D, Salih M, Kundu I, Li L, Akimov A, Davies AG, Linfield E, Cunningham J, Kent A (2020) High-speed modulation of a terahertz quantum cascade laser by coherent acoustic phonon pulses. Nat Commun 11:835

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Paschotta R (2007) Laser sources for ultrashort pulses. RP Photonics 1:49

    Google Scholar 

  25. Laurent T, Sharma R, Torres J, Nouvel P, Blin S, Varani L, Cordier Y, Chmielowska M, Chenot S, Faurie JP, Beaumont B, Shiktorov P, Starikov E, Gruzinskis V, Korotyeyev VV, Kochelap A (2011) Voltage-controlled sub-terahertz radiation transmission through GaN quantum well structure. Appl Phys Lett 99:082101

    Google Scholar 

  26. Sharma R, Laurent T, Torres J, Nouvel P, Blin S, Varani L, Cordier Y, Chmielowska M, Chenot S, Faurie JP, Beaumont B (2013) Terahertz transmission and effective gain measurement of two-dimensional electron gas. Phys Status Solidi A 210:1454

    CAS  Google Scholar 

  27. Deacon DAG, Elias LR, Madey JMJ, Ramian GJ, Schwettman HA, Smith TI (1977) First operation of a free-electron laser. Phys Rev Lett 38:892–893

    Google Scholar 

  28. Li Z, Syed AA, Zhao P, Yang JC, Sharma R, Ensley TR, Matichak JD, Davydenko I, Jang SH, Hagan DJ, Marder SR, Van Stryland EW, Jen AKY (2019) The Cationic Polyelectrolyte for Anionic Cyanines: An Efficient Way To Translate Molecular Properties into Material Properties. J Am Chem Soc 141:17331–17336

    CAS  PubMed  Google Scholar 

  29. Jin Q, Yiwen E, Williams K, Dai J, Zhang XC (2017) Observation of broadband terahertz wave generation from liquid water. Appl Phys Lett 111:0711031–3

    Google Scholar 

  30. Shumyatsky P, Alfeno RR (2011) THz sources. J Biomed Opt 16:033001–9

    PubMed  Google Scholar 

  31. Schrottke L, Giehler M, Wienold M, Hey R, Grahn HT (2010) Compact model for the efficient simulation of the optical gain and transport properties in THz quantum-cascade lasers. Semicond Sci Technol 25:045025

    Google Scholar 

  32. Schrottke L, Wienold M, Giehler M, Hey R, Grahn HT (2010) Analysis of the slope efficiency for terahertz quantum-cascade lasers. J Appl Phys 108:103108

    Google Scholar 

  33. Sharma R, Schrottke L, Wienold M, Tahraoui A, Hey R, Grahn HT (2011) Effect of stimulated emission on the transport chracteristics of terahertz quantum-cascade lasers. Appl Phys Lett 99:151116

    Google Scholar 

  34. Sharma R, Schrottke L, Wienold M, Tahraoui A Biermann K, Grahn HT (2013) Influence of post-growth rapid thermal annealing on the transport and lasing chracteristics of terahertz quantum-cascade lasers. J Phys D Appl Phys 46:305107

    Google Scholar 

  35. Wienold M, Tahraoui A, Schrottke L, Sharma R, Lü X, Biermann K, Hey R, Grahn HT (2012) Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers. Opt Exp 20:11207–11207

    CAS  Google Scholar 

  36. Wienold M, Tahraoui A, Schrottke L, Sharma R, Biermann K, Hey R, Grahn HT (2014) High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback (2014). Opt Exp 22:3334–3348

    CAS  Google Scholar 

  37. Cao JC (2012) Research progress in terahertz quantum cascade lasers. Sci China Inf Sci 55:16

    Google Scholar 

  38. Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY (1994) Quantum Cascade Laser Science, 264:553–556

  39. Scalari G, Ajili L, Faist J, Beere H, Linfield E, et al. (2003) Far-infrared bound-to-continuum quantum-cascade lasers operating up to 90. K App Phy Lett 82:3165–3167

    CAS  Google Scholar 

  40. Salih M, Dean P, Valavanis A, Khanna SP, Li LH, et al. (2013) Terahertz quantum cascade lasers with thin resonant-phonon depopulation active regions and surface-plasmon waveguides. J Appl Phys 113:113110

    Google Scholar 

  41. Fujitaa K, Junga S, Jiang Y, Kim JH, Nakanishi A (2018) Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics 11:1775–1817

    Google Scholar 

  42. Kainz MA, Schönhuber S, Andrews AM, Detz H, Limbacher B, Strasser G, Unterrainer K (2018) Barrier height tuning of terahertz quantum cascade lasers for high-temperature operation. ACS Photonics 5:4687

    PubMed  PubMed Central  Google Scholar 

  43. Chassagneux Y, Palomo J, Colombelli R, Barbieri S, Dhillon S (2007) Low threshold THz QC lasers with thin core regions. Elec Lett 43:5

    Google Scholar 

  44. Han YJ, Li LH, Zhu J, Valavanis A, Freeman JR, Chen L, Rosamond M, DEAN P, Davies AG, Linfield EH (2018) Silver-based surface plasmon waveguide for terahertz quantum cascade lasers. Opt Exp 26:3817

    Google Scholar 

  45. Kubis T, Mehrotra SR, Klimeckl G (2010) Design concepts of terahertz quantum cascade lasers. Appl Phys Lett 97:261106

    Google Scholar 

  46. Kohen S, Williams BS (2006) Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators. J Appl Phys 97:053106

    Google Scholar 

  47. Bosco L, Franckie M, Scalari G, Beck M, Wacker A, Faist J (2019) Thermoelectrically cooled THz quantum cascade laser operating up to 210K. Appl Phys Lett 115:010601–5

    Google Scholar 

  48. Kruger O, Kreutzmann S, Prasai D, Sharma R, Wienold M, Biermann K, Schrottke L, Schnieder F, Erbert G, Grahn HT (2013) Epitaxial-side mounting of terahertz quantum-cascade lasers for improved heat management. IEEE Photon Tech Lett 25:1570–1573

    Google Scholar 

  49. Li L, Chen L, Zhu J, Freeman J, Dean P, Valavanis A, Davies AG, Linfield EH (2014) Terahertz quantum cascade lasers with > 1 W output powers. Elec Lett 50:309–311

    CAS  Google Scholar 

  50. Fathololoumi S, Dupont E, Chan WI, Wasilewski ZR, Laframboise SR, Ban D, Matyas A, Jirauschek C, Hu Q, Liu HC (2012) Terahertz quantum cascade lasers operating up to 200 Kx with optimized oscillator strength and improved injection tunneling. Opt. Express 20:3866

    CAS  PubMed  Google Scholar 

  51. Razavipour SG, Dupont E, Wasilewski ZR (2015) Effects of interface roughness scattering on device performance of indirectly pumped terahertz quantum cascade lasers. J Phys Conf Ser 619:012003

    Google Scholar 

  52. Jirauschek C, Kubis T (2014) Modeling techniques for quantum cascade lasers. J Appl Phys 1:011307

    Google Scholar 

  53. Chan WCI, Hu Q, Reno JL (2013) Tall barriers terahertz quantum cascade lasers. Appl Phys Lett 103:151117

    Google Scholar 

Download references

Acknowledgments

The experimental facilities and constructive discussions extended by H.T. Grahn, L. Schrottke, and M. Wienold, Paul-Drude-Institut für Festkörperelektronik, Berlin, Germany, are sincerely acknowledged by the corresponding author Rajesh Sharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Sharma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Kaur, H. & Singh, M. Recent Advances of Efficient Design of Terahertz Quantum-Cascade Lasers. Plasmonics 16, 449–461 (2021). https://doi.org/10.1007/s11468-020-01295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01295-4

Keywords

Navigation