Skip to main content
Log in

Design of Sub wavelength-Grating-Coupled Fano Resonance Sensor in Mid-infrared

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

By introducing the sub-wavelength grating (SWG) waveguide in the long-range surface phonon resonance (LRSPhR) device, a mid-infrared Fano resonance is formed due to the coupling between surface phonon polariton and Bloch mode. By taking advantage of strong light-matter interaction in the SWG, such Fano resonance is expected to offer improved sensing performance. Based on the rigorous coupled-wave analysis (RCWA) method, the index sensitivity and figure of merit of such a sensor reach 7496 RIU−1 and 46,432, respectively, which is 6 times compared with the conventional waveguide-coupled LRSPhR. The proposed SWG-coupled Fano resonance can be a promising platform for mid-infrared biochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mejía-Salazar JR, Oliveira ON (2018) Plasmonic Biosensing. Chem Rev 118:10617–10625

    Article  Google Scholar 

  2. Liedberg B, Nylander C, Lunstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 4:299–304

    Article  CAS  Google Scholar 

  3. Xu S, Zhan J, Man B, Jiang S, Yue W, Gao S, Guo C, Liu H, Li Z, Wang J (2017) Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat Commun 8:14902

    Article  CAS  Google Scholar 

  4. Chen ZQ, Chen Y, Xue ZH, Gao XD, Jia YA, Wang YJ, Lu YP, Zhang JY, Zhang M, Chen HX (2020) Insight into the inactivation mechanism of soybean Bowman-Birk trypsin inhibitor (BBTI) induced by epigallocatechin gallate and epigallocatechin: Fluorescence, thermodynamics and docking studies, Food Chem, 303

  5. Masdor NA, Altintas Z, Shukor MY, Tothilll IE (2019) Subtractive inhibition assay for the detection of Campylobacter jejuni in chicken samples using surface plasmon resonance, Sci Rep-Uk, 9

  6. Caldwell JD, Glembocki OJ, Francescato Y, Sharac N, Giannini V, Bezares FJ, Long JP, Owrutsky JC, Vurgaftman I, Tischler JG, Wheeler VD, Bassim ND, Shirey LM, Kasica R, Maier SA (2013) Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett 13:3690–3697

    Article  CAS  Google Scholar 

  7. Zheng GG, Zhang HJ, Bu LB, Gao HY, Xu LH, Liu YZ (2018) Tunable Fano resonances in mid-infrared waveguide-coupled Otto configuration. Plasmonics 13:215–220

    Article  CAS  Google Scholar 

  8. Khurgin JB, Sun G Scaling of losses with size and wavelength in nanoplasmonics and metamaterials, Appl Phys Lett, 99

  9. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291

    Article  CAS  Google Scholar 

  10. Dunkelberger AD, Ellis CT, Ratchford DC, Giles AJ, Kim M, Kim CS, Spann BT, Vurgaftman I, Tischler JG, Long JP, Glembocki OJ, Owrutsky JC, Caldwell JD (2018) Active tuning of surface phonon polariton resonances via carrier photoinjection. Nat Photonics 12:50

    Article  CAS  Google Scholar 

  11. Caldwell JD, Lindsay L, Giannini V, Vurgaftman I, Reinecke TL, Maier SA, Glembocki OJ (2015) Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics-Berlin 4:44–68

    Article  CAS  Google Scholar 

  12. Zhu JQ, Ruan BX, You Q, Wu LM, Cai HZ, Dai XY, Xiang YJ (2018) Ultrasensitive Terahertz Imaging Sensors Based on the Strong Coupling of Surface Phonon Polariton and Graphene Surface Plasmon Polariton, Ieee Photonics J, 10

  13. Ren XB, Ren K, Cai YX (2017) Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Appl Optics 56:H1–H9

    Article  Google Scholar 

  14. Hayashi S, Nesterenko DV, Sekkat Z (2015) Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors, Appl Phys Express, 8

  15. Farmani H, Farmani A, Biglari Z, (2020) A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection, Physica E, 116

  16. Lu H, Liu XM, Mao D, Wang GX (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37:3780–3782

    Article  Google Scholar 

  17. Deng Y, Cao GT, Yang H, Li GH, Chen XS, Lu W (2017) Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities, Sci Rep-Uk, 7

  18. Chen JJ, Gan FY, Wang YJ, Li GZ (2018) Plasmonic Sensing and Modulation Based on Fano Resonances, Adv Opt Mater, 6 (2018)

  19. Xie Y, Chen Z, Wu Y, Zhao Y, Huang T, Cheng Z (2019) Bloch supermode interaction for high-performance polarization beam splitting. Opt Eng 58:095102

    Google Scholar 

  20. Xie Y, Chen Z, Yan J, Wu Y, Huang T, Cheng Z (2019) Combination of Surface Plasmon Polaritons and Subwavelength Grating for Polarization Beam Splitting, Plasmonics, 1–7

  21. Huang TY, Xie Y, Wu YH, Cheng Z, Zeng SW, Ping PS (2019) Compact polarization beam splitter assisted by subwavelength grating in triple-waveguide directional coupler. Appl Optics 58:2264–2268

    Article  CAS  Google Scholar 

  22. Halir R, Bock PJ, Cheben P, Ortega-Monux A, Alonso-Ramos C, Schmid JH, Lapointe J, Xu DX, Wanguemert-Perez JG, Molina-Fernandez I, Janz S (2015) Waveguide sub-wavelength structures: a review of principles and applications. Laser Photonics Rev 9:25–49

    Article  CAS  Google Scholar 

  23. Luque-Gonzalez JM, Herrero-Bermello A, Ortega-Monux A, Molina-Fernandez I, Velasco AV, Cheben P, Schmid JH, Wang SR, Halir R (2018) Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides. Opt Lett 43:4691–4694

    Article  CAS  Google Scholar 

  24. Bock PJ, Cheben P, Schmid JH, Lapointe J, Delâge A, Janz S, Aers GC, Xu D, Densmore A, Hall TJ (2010) Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Opt Express 18:20251–20262

    Article  CAS  Google Scholar 

  25. Gervais A, Jean P, Shi W, Larochelle S (2019) Design of slow-light subwavelength grating waveguides for enhanced on-chip methane sensing by absorption spectroscopy. IEEE J Sel Top Quantum Electron 25:1–8

    Article  Google Scholar 

  26. Xu G, Wang J, Ji Q, Yang M, Huang T, Pan J, Xie Y, Shum PP (2020) Design and analysis of slow-light Bloch slot waveguides for on-chip gas sensing. Journal of The Optical Society of America B-optical Physics 37:257–263

    Article  CAS  Google Scholar 

  27. Neuner B, Korobkin D, Fietz C, Carole D, Ferro G, Shvets G (2009) Critically coupled surface phonon-polariton excitation in silicon carbide. Opt Lett 34:2667–2669

    Article  Google Scholar 

  28. Zou XJ, Zheng GG, Chen YY, Xian FL, Xu LH (2018) Tunable and angle-independent thermal emitter based on surface phonon polariton mode in the mid-infrared range. Opt Mater 85:91–95

    Article  CAS  Google Scholar 

  29. Zheng GG, Xu LH, Zou XJ, Liu YZ (2017) Excitation of surface phonon polariton modes in gold gratings with silicon carbide substrate and their potential sensing applications. Appl Surf Sci 396:711–716

    Article  CAS  Google Scholar 

  30. Zheng G, Chen Y, Bu L, Xu L, Su W (2016) Waveguide-coupled surface phonon resonance sensors with super-resolution in the mid-infrared region. Opt Lett 41:1582–1585

    Article  CAS  Google Scholar 

  31. Liu V, Fan S (2012) S4: A free electromagnetic solver for layered periodic structures. Comput Phys Commun 183:2233–2244

    Article  CAS  Google Scholar 

  32. Hogan B, Lewis L, McAuliffe M, Hegarty SP (2019) Mid-infrared optical sensing using sub-wavelength gratings. Opt Express 27:3169–3179

    Article  CAS  Google Scholar 

  33. Moharam MG, Gaylord TK (1981) Rigorous coupled-wave analysis of planar-grating diffraction. Journal of the Optical Society of America 71:811–818

    Article  Google Scholar 

  34. Moharam MG, Grann EB, Pommet DA, Gaylord TK (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. Journal of The Optical Society of America A-optics Image Science and Vision 12:1068–1076

    Article  Google Scholar 

  35. Chen J, Li Z, Zou Y, Deng Z, Xiao J, Gong Q (2013) Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8:1627–1631

    Article  CAS  Google Scholar 

  36. Moncada-Villa E, Oliveira ON, Mejía-Salazar JR (2019) ε-Near-zero materials for highly miniaturizable magnetoplasmonic sensing devices. The Journal of Physical Chemistry C 123:3790–3794

    Article  CAS  Google Scholar 

  37. Girón-Sedas JA, Reyes Gómez F, Albella P, Mejía-Salazar JR, (2017) Oliveira ON Giant enhancement of the transverse magneto-optical Kerr effect through the coupling of ε-near-zero and surface plasmon polariton modes, Physical Review B, 96 075415

  38. Caballero B, Garciamartin A, Cuevas J (2016) Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photonics 3:203–208

    Article  CAS  Google Scholar 

  39. Chien F, Lo J, Zhang X, Cubukcu E, Luo Y, Huang K, Tang X, Chen C, Chen C, Lai K (2018) Nitride-based microarray biochips: a new route of plasmonic imaging. ACS Appl Mater Interfaces 10:39898–39903

    Article  CAS  Google Scholar 

  40. Diaz-Valencia BF, Mejía-Salazar JR, Oliveira ON, Porras-Montenegro N, Albella P (2017) Enhanced transverse magneto-optical Kerr effect in magnetoplasmonic crystals for the design of highly sensitive plasmonic (bio)sensing platforms. ACS Omega 2:7682–7685

    Article  CAS  Google Scholar 

  41. Ignatyeva DO, Knyazev GA, Kapralov PO, Dietler G, Sekatskii SK, Belotelov VI (2016) Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Sci Rep-Uk 6:28077–28077

    Article  CAS  Google Scholar 

  42. Zhao Z, Cheng Z, Zhu M, Huang T, Zeng S, Pan J, Song C, Wang Y, and Shum PP (2020) “Study on the dual-Fano resonance generation and its potential for self-calibriated sensing”, Optics Express, to be appeared

  43. Zhao X, Huang T, Ping P, Wu X, Huang P, Pan J, Wu Y, Cheng Z (2018) Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors 18:2056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangli Zhang or Tianye Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, D., Zhang, X. et al. Design of Sub wavelength-Grating-Coupled Fano Resonance Sensor in Mid-infrared. Plasmonics 16, 463–469 (2021). https://doi.org/10.1007/s11468-020-01313-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01313-5

Keywords

Navigation