Skip to main content
Log in

Glucose Level Measurement Using Photonic Crystal Fiber–based Plasmonic Sensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, we demonstrate the design of a photonic crystal fiber (PCF)-based plasmonic sensor to measure the glucose level of urine. The sensor is designed by placing a small segment of PCF between a lead-in and a lead-out single-mode fiber. We utilize the finite element method to simulate the proposed plasmonic sensor for the measurement of glucose level in urine. To offer external sensing, the cladding layer of the PCF was coated by a thin layer of gold where the gold-coated PCF was immersed in the urine sample. As a result, the urine can easily interact with the plasmonic layer of the sensor. In the outermost laser of the PCF, we considered a perfectly matched layer as a boundary condition. The simulation results confirm excellent wavelength and amplitude sensitivities where the maximum wavelength sensitivity was 2500 nm/RIU and amplitude sensitivity was 152 RIU−1 with a sensing resolution of 4 × 10−6. For optimization of the plasmonic sensor, we varied the physical parameters of the cladding air holes and the thickness of the gold layer during the simulation. We strongly believe that the proposed plasmonic sensor will play a significant role to pave the way for achieving a simple but effective PCF-based glucose sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Russell PSJ (2006) Photonic-crystal fibers. J Lightwave Technol 24:4729–4749. https://doi.org/10.1109/JLT.2006.885258

    Article  Google Scholar 

  2. Arismar Cerqueira S (2010) Recent progress and novel applications of photonic crystal fibers. Rep Prog Phys 73:024401. https://doi.org/10.1088/0034-4885/73/2/024401

    Article  CAS  Google Scholar 

  3. Rahaman ME, Hossain MM, Shekhar Mondal H et al (2020) Theoretical analysis of large negative dispersion photonic crystal fiber with small confinement loss. Appl Opt 59:8925. https://doi.org/10.1364/AO.397420

    Article  PubMed  Google Scholar 

  4. Rahaman ME, Mondal HS, Hossain MB et al (2020) Simulation of a highly birefringent photonic crystal fiber in terahertz frequency region. SN Appl Sci 2:1435. https://doi.org/10.1007/s42452-020-03210-2

    Article  CAS  Google Scholar 

  5. Saha R, Hossain MM, Rahaman ME, Mondal HS (2019) Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber. Front Optoelectron 12:165–173. https://doi.org/10.1007/s12200-018-0837-6

    Article  Google Scholar 

  6. Riyadh SMBA, Hossain MM, Rahaman ME et al (2018) Photonic crystal fibers for sensing applications. J Biosens Bioelectron 9(1):251. https://doi.org/10.4172/2155-6210.1000251

    Article  Google Scholar 

  7. Iqbal F, Biswas S, Bulbul AA-M et al (2020) Alcohol sensing and classification using PCF-based sensor. Sens Bio-Sensing Res 30:100384. https://doi.org/10.1016/j.sbsr.2020.100384

    Article  Google Scholar 

  8. Rifat A, Mahdiraji G, Chow D et al (2015) Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15:11499–11510. https://doi.org/10.3390/s150511499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao Y, Deng ZQ, Li J (2014) Photonic crystal fiber based surface plasmon resonance chemical sensors. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2014.05.127

    Article  Google Scholar 

  10. Rahaman ME, Jibon RH, Hossain MB et al (2020) Sensing toxic carbonyl compounds in cigarette smoke by photonic crystal fiber. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, pp 1–5

  11. Ekhlasur Rahaman M, Bellal Hossain M, Shekhar Mondal H et al (2020) Highly sensitive photonic crystal fiber liquid sensor in terahertz frequency range. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.11.413

    Article  Google Scholar 

  12. Lee B, Roh S, Park J (2009) Current status of micro- and nano-structured optical fiber sensors. Opt Fiber Technol. https://doi.org/10.1016/j.yofte.2009.02.006

    Article  Google Scholar 

  13. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev. https://doi.org/10.1103/PhysRev.106.874

    Article  Google Scholar 

  14. Rifat AA, Mahdiraji GA, Sua YM et al (2015) Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photon Technol Lett. https://doi.org/10.1109/LPT.2015.2432812

    Article  Google Scholar 

  15. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12:213–220. https://doi.org/10.1016/0925-4005(93)80021-3

    Article  CAS  Google Scholar 

  16. Liu C, Yang L, Lu X et al (2017) Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt Express 25:14227. https://doi.org/10.1364/OE.25.014227

    Article  CAS  PubMed  Google Scholar 

  17. Wu T, Shao Y, Wang Y et al (2017) Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt Express 25:20313. https://doi.org/10.1364/OE.25.020313

    Article  CAS  PubMed  Google Scholar 

  18. Azab MY, Hameed MFO, Heikal AM et al (2017) Surface plasmon photonic crystal fiber biosensor for glucose monitoring. In: 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES). IEEE, pp 1–2

  19. Rifat AA, Mahdiraji GA, Shee YG et al (2016) A Novel Photonic Crystal Fiber Biosensor Using Surface Plasmon Resonance. Procedia Eng 140:1–7. https://doi.org/10.1016/j.proeng.2015.08.1107

    Article  CAS  Google Scholar 

  20. Dash JN, Jha R (2014) SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol Lett 26:595–598. https://doi.org/10.1109/LPT.2014.2301153

    Article  CAS  Google Scholar 

  21. Hasan M, Akter S, Rifat A et al (2017) A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. Photonics 4:18. https://doi.org/10.3390/photonics4010018

    Article  CAS  Google Scholar 

  22. Han H, Hou D, Zhao L et al (2020) A large detection-range plasmonic sensor based on an H-shaped photonic crystal fiber. Sensors 20:1009. https://doi.org/10.3390/s20041009

    Article  CAS  PubMed Central  Google Scholar 

  23. Rahaman ME, Saha R, Ahsan MS, Sohn I-B (2018) Design and performance analysis of a D–shaped PCF and surface plasmon resonance based glucose sensor. In: 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT). IEEE, pp 325–329

  24. Liu Q, Sun J, Sun Y et al (2020) Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film. Opt Mater (Amst) 102:109800. https://doi.org/10.1016/j.optmat.2020.109800

    Article  CAS  Google Scholar 

  25. Guo X, Han L, Liu F, Li S (2020) Refractive index sensing characteristics of dual-core PCF based on surface plasmon resonance. Optik (Stuttg) 218:164796. https://doi.org/10.1016/j.ijleo.2020.164796

    Article  CAS  Google Scholar 

  26. Akowuah EK, Gorman T, Ademgil H et al (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48:1403–1410

    Article  CAS  Google Scholar 

  27. Wang G, Li S, An G et al (2015) Design of a polarized filtering photonic-crystal fiber with gold-coated air holes. Appl Opt 54:8817. https://doi.org/10.1364/AO.54.008817

    Article  CAS  PubMed  Google Scholar 

  28. Vial A, Grimault AS, Macías D et al (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B - Condens Matter Mater Phys 71:085416. https://doi.org/10.1103/PhysRevB.71.085416

    Article  CAS  Google Scholar 

  29. Robinson S, Dhanlaksmi N (2017) Photonic crystal based biosensor for the detection of glucose concentration in urine. Photonic Sensors 7:11–19. https://doi.org/10.1007/s13320-016-0347-3

    Article  CAS  Google Scholar 

  30. Sharma P, Sharan P (2015) Design of photonic crystal-based biosensor for detection of glucose concentration in urine. IEEE Sens J 15:1035–1042. https://doi.org/10.1109/JSEN.2014.2359799

    Article  CAS  Google Scholar 

  31. Rifat AA, Mahdiraji GA, Sua YM et al (2016) Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt Express 24:186–190. https://doi.org/10.1364/OE.24.002485

    Article  Google Scholar 

  32. Hossain MM, Ahsan MS, Sikder N et al (2021) High birefringence and broadband dispersion compensation photonic crystal fiber. J Opt Commun. https://doi.org/10.1515/joc-2020-0140

    Article  Google Scholar 

  33. Wang F, Sun Z, Liu C et al (2018) A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE). Opto-Electronics Rev 26:50–56

    Article  Google Scholar 

  34. Hossen MN, Ferdous M, Abdul Khalek M et al (2018) Design and analysis of biosensor based on surface plasmon resonance. Sens Bio-Sensing Res 21:1–6. https://doi.org/10.1016/j.sbsr.2018.08.003

    Article  Google Scholar 

  35. Fan Z, Li S, Liu Q et al (2015) High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J 7:1–9. https://doi.org/10.1109/JPHOT.2015.2432079

    Article  CAS  Google Scholar 

  36. Ghazanfari A, Li W, Leu MC, Hilmas GE (2017) A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit Manuf 15:102–112. https://doi.org/10.1016/j.addma.2017.04.001

    Article  Google Scholar 

  37. Bise RT, Trevor DJ (2005) Sol-gel derived microstructured fiber: fabrication and characterization. In: Conference on Optical Fiber Communication, Technical Digest Series. pp 269–271

  38. Cubillas AM, Unterkofler S, Euser TG et al (2013) Photonic crystal fibres for chemical sensing and photochemistry. Chem Soc Rev 42:8629–8648. https://doi.org/10.1039/c3cs60128e

    Article  CAS  PubMed  Google Scholar 

  39. Ebendorff-Heidepriem H, Schuppich J, Dowler A et al (2014) 3D-printed extrusion dies: a versatile approach to optical material processing. Opt Mater Express 4:1494. https://doi.org/10.1364/ome.4.001494

    Article  Google Scholar 

  40. Argyros A, Bassett I, van Eijkelenborg M et al (2001) Ring structures in microstructured polymer optical fibres. Opt Express 9:813. https://doi.org/10.1364/oe.9.000813

    Article  CAS  PubMed  Google Scholar 

  41. Russell Emeritus Group. https://mpl.mpg.de/research-at-mpl/russell-emeritus-group/research/tdsu-3-fibre-fabrication/. Accessed 12 Jun 2021

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Md. Ekhlasur Rahaman, Md. Shamim Ahsan, and Farid Ahmed. The first draft of the manuscript was written by Md. Ekhlasur Rahaman, and Rayhan Habib Jibon. Ik-Bu Sohn and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Md. Ekhlasur Rahaman or Md. Shamim Ahsan.

Ethics declarations

Consent for Publication

The work described has not been published before. The work is not under consideration for publication elsewhere.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahaman, M., Jibon, R.H., Ahsan, M. et al. Glucose Level Measurement Using Photonic Crystal Fiber–based Plasmonic Sensor. Plasmonics 17, 1–11 (2022). https://doi.org/10.1007/s11468-021-01497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01497-4

Keywords

Navigation