Skip to main content
Log in

Research on Spoof Surface Plasmon Polaritons (SPPs) at Microwave Frequencies: a Bibliometric Review

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In recent years, Spoof surface plasmon polaritons (SPPs) have been studied at microwave (MW) frequencies. The Spoof SPPs can be supported by plasmonic metamaterials, which are usually periodic structures decorated on metallic surfaces. Due to the high field confinement property, the Spoof SPP-based transmission lines (TLs) and devices do not suffer from the compactness limitation of the conventional MW technology and have less mutual coupling (MC), thus providing an alternative for future integrated circuits. In particular, we briefly introduce Spoof SPPs and their applications in MW frequencies. We analyze the Spoof SPP research scientifically and systematically and display the research status and possible development trend in this field concisely and intuitively, which provide the theoretical basis for the in-depth study of Spoof SPPs for scientific research. Finally, the future directions and potential applications of MW Spoof SPPs are discussed. This study uses CiteSpace software to conduct a quantitative analysis of 581 articles from the Web of Science Core Collection database in 2004–2020. Over the past 16 years, many scholars and experts have done extensive research on Spoof SPPs. As the first bibliometric review of the Spoof SPPs, this study will help researchers to identify research trends, topics, major publications, and influential scientists in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics. Published. https://doi.org/10.1007/bfb0048317

  2. Agranovich VM, Mills DL (1982) Surface polaritons - electromagnetic waves at surfaces and interfaces. Elsevier Science Ltd

  3. Pendry JB (2004) Mimicking surface plasmons with structured surfaces. Science 305(5685):847–848. https://doi.org/10.1126/science.1098999

  4. Hibbins AP (2005) Experimental verification of designer surface plasmons. Science 308(5722):670–672. https://doi.org/10.1126/science.1109043

  5. Maier SA, Andrews SR, Martín-Moreno L, García-Vidal FJ (2006) Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 97(17). https://doi.org/10.1103/physrevlett.97.176805

  6. Fernandez-Dominguez A, Martin-Moreno L, Garcia-Vidal F, Andrews S, Maier S (2008) Spoof surface plasmon polariton modes propagating along periodically corrugated wires. IEEE J Sel Top Quantum Electron 14(6):1515–1521. https://doi.org/10.1109/jstqe.2008.918107

    Article  CAS  Google Scholar 

  7. Fu Z, Gan Q, Ding YJ, Bartoli FJ (2008) From waveguiding to spatial localization of THz waves within a plasmonic metallic grating. IEEE J Sel Top Quantum Electron 14(2):486–490. https://doi.org/10.1109/jstqe.2008.917032

    Article  CAS  Google Scholar 

  8. Yang SH (2008) Effect of surface texture and geometry on spoof surface plasmon dispersion. Opt Eng 47(2):029001. https://doi.org/10.1117/1.2844723

    Article  Google Scholar 

  9. Wu JJ (2010) Subwavelength microwave guiding by periodically corrugated strip line. Progress In Electromagnetics Research 104:113–123. https://doi.org/10.2528/pier10021202

    Article  Google Scholar 

  10. Wu J, Kao Y, Lin H, Yang T, Tsai D, Chang H, Li C, Hsieh I, Shen L, Zhang X (2010) Crosstalk reduction between metal-strips with subwavelength periodically corrugated structure. Electron Lett 46(18):1273. https://doi.org/10.1049/el.2010.1563

    Article  Google Scholar 

  11. Wu JJ, Lin HE, Yang TJ, Chang HJ, Hsieh IJ (2010) Low-frequency surface plasmon polaritons guided on a corrugated metal striplines with subwavelength periodical inward slits. Plasmonics 6(1):59–65. https://doi.org/10.1007/s11468-010-9169-0

    Article  Google Scholar 

  12. Stone EK, Hendry E (2011) Dispersion of spoof surface plasmons in open-ended metallic hole arrays. Phys Rev B 84(3). https://doi.org/10.1103/physrevb.84.035418

  13. Kats MA, Woolf D, Blanchard R, Yu N, Capasso F (2011) Spoof plasmon analogue of metal-insulator-metal waveguides. Opt Express 19(16):14860. https://doi.org/10.1364/oe.19.014860

    Article  CAS  PubMed  Google Scholar 

  14. Ooi K, Okada T, Tanaka K (2011) Mimicking electromagnetically induced transparency by spoof surface plasmons. Phys Rev B 84(11). https://doi.org/10.1103/physrevb.84.115405

  15. Nazarov M, Coutaz JL (2011) Terahertz surface waves propagating on metals with sub-wavelength structure and grating reliefs. J Infrared Millim Terahertz Waves 32(10):1054–1073. https://doi.org/10.1007/s10762-011-9814-5

  16. Wu J, Tsai D, Yang TJ, Lin H, Chiueh HL, Shen L, Hsieh IJ, Shen J, Yang W, Gao Z (2012) Reduction of wide-band crosstalk for guiding microwave in corrugated metal strip lines with subwavelength periodic hairpin slits. IET Microwaves Antennas Propag 6(2):231. https://doi.org/10.1049/iet-map.2011.0055

    Article  Google Scholar 

  17. Wood JJ, Tomlinson LA, Hess O, Maier SA, Fernández-Domínguez AI (2012) Spoof plasmon polaritons in slanted geometries. Phys Rev B 85(7). https://doi.org/10.1103/physrevb.85.075441

  18. Miyamaru F, Kamijyo M, Hanaoka N, Takeda MW (2012) Controlling extraordinary transmission characteristics of metal hole arrays with spoof surface plasmons. Appl Phys Lett 100(8):081112. https://doi.org/10.1063/1.3689784

    Article  CAS  Google Scholar 

  19. Wu J, Hou D, Yang T, Hsieh I, Kao Y, Lin H (2012) Bandpass filter based on low frequency spoof surface plasmon polaritons. Electron Lett 48(5):269. https://doi.org/10.1049/el.2011.3693

    Article  Google Scholar 

  20. Gao X, Shi JH, Ma HF, Jiang WX, Cui TJ (2012) Dual-band spoof surface plasmon polaritons based on composite-periodic gratings. J Phys D Appl Phys 45(50):505104. https://doi.org/10.1088/0022-3727/45/50/505104

    Article  CAS  Google Scholar 

  21. Shen L, Chen X, Yang TJ (2008) Terahertz surface plasmon polaritons on periodically corrugated metal surfaces. Opt Express 16(5):3326. https://doi.org/10.1364/oe.16.003326

    Article  CAS  PubMed  Google Scholar 

  22. Shen L, Chen X, Zhong Y, Agarwal K (2008) Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires. Phys Rev B 77(7). https://doi.org/10.1103/physrevb.77.075408

  23. Zhang X, Shen L, Wu J, Yang T (2009) Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss. J Electromagn Waves Appl 23:2451–2460. https://doi.org/10.1163/156939309790415991

  24. Zhang J, Cai L, Bai W, Xu Y, Song G (2009) Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide. J Appl Phys 106(10):103715. https://doi.org/10.1063/1.3260236

    Article  CAS  Google Scholar 

  25. Jiang T, Shen L, Wu JJ, Yang TJ, Ruan Z, Ran L (2011) Realization of tightly confined channel plasmon polaritons at low frequencies. Appl Phys Lett 99(26):261103. https://doi.org/10.1063/1.3672048

    Article  CAS  Google Scholar 

  26. Kushiyama Y, Arima T, Uno T (2012) Experimental verification of spoof surface plasmons in wire metamaterials. Opt Express 20(16):18238. https://doi.org/10.1364/oe.20.018238

    Article  PubMed  Google Scholar 

  27. Shen X, Cui TJ, Martin-Cano D, Garcia-Vidal FJ (2012) Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci 110(1):40–45. https://doi.org/10.1073/pnas.1210417110

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shen X, Jun Cui T (2013) Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl Phys Lett 102(21):211909. https://doi.org/10.1063/1.4808350

    Article  CAS  Google Scholar 

  29. Liu X, Feng Y, Zhu B, Zhao J, Jiang T (2013) High-order modes of spoof surface plasmonic wave transmission on thin metal film structure. Opt Express 21(25):31155. https://doi.org/10.1364/oe.21.031155

    Article  PubMed  Google Scholar 

  30. Wu JJ, Hou DJ, Liu K, Shen L, Tsai CA, Wu CJ, Tsai D, Yang TJ (2014) Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons. Opt Express 22(22):26777. https://doi.org/10.1364/oe.22.026777

    Article  PubMed  Google Scholar 

  31. Liu X, Zhu L, Wu Q, Feng Y (2015) Highly-confined and low-loss spoof surface plasmon polaritons structure with periodic loading of trapezoidal grooves. AIP Adv 5(7):077123. https://doi.org/10.1063/1.4926770

    Article  CAS  Google Scholar 

  32. Zhang HC, Cui TJ, Zhang Q, Fan Y, Fu X (2015) Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics 2(9):1333–1340. https://doi.org/10.1021/acsphotonics.5b00316

    Article  CAS  Google Scholar 

  33. Liu L, Yang C, Yang J, Xiang H, Han D (2017) Spoof surface plasmon polaritons on ultrathin metal strips: from rectangular grooves to split-ring structures. J Opt Soc Am B 34(6):1130. https://doi.org/10.1364/josab.34.001130

    Article  CAS  Google Scholar 

  34. Xu KD, Guo YJ, Deng X (2019) Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves. Opt Express 27(4):4354. https://doi.org/10.1364/oe.27.004354

    Article  CAS  PubMed  Google Scholar 

  35. Xu KD, Zhang F, Guo Y, Ye L, Liu Y (2020) Spoof surface plasmon polaritons based on balanced coplanar stripline waveguides. IEEE Photonics Technol Lett 32(1):55–58. https://doi.org/10.1109/lpt.2019.2957059

    Article  CAS  Google Scholar 

  36. Ye L, Chen Y, Zhou J, Feng H, Zhang Y, Liu QH (2020) High-performance spoof surface plasmon polariton waveguides and splitters based on Greek-cross fractal units. J Phys D Appl Phys 53(23):235502. https://doi.org/10.1088/1361-6463/ab7c9e

    Article  CAS  Google Scholar 

  37. Ye L, Feng H, Cai G, Zhang Y, Yan B, Liu QH (2019) High-efficient and low-coupling spoof surface plasmon polaritons enabled by V-shaped microstrips. Opt Express 27(16):22088. https://doi.org/10.1364/oe.27.022088

    Article  CAS  PubMed  Google Scholar 

  38. Ye L, Zhang W, Ofori-Okai BK, Li W, Zhuo J, Cai G, Liu QH (2018) Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units. J Lightwave Technol 36(20):4988–4994. https://doi.org/10.1109/jlt.2018.2868129

    Article  CAS  Google Scholar 

  39. Zhang HC, Zhang Q, Liu JF, Tang W, Fan Y, Cui TJ (2016) Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies. Sci Rep 6(1). https://doi.org/10.1038/srep23396

  40. Gao X, Zhou L, Liao Z, Ma HF, Cui TJ (2014) An ultra-wideband surface plasmonic filter in microwave frequency. Appl Phys Lett 104(19):191603. https://doi.org/10.1063/1.4876962

    Article  CAS  Google Scholar 

  41. Gao X, Zhou L, Cui TJ (2015) Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial. Sci Rep 5(1). https://doi.org/10.1038/srep09250

  42. Liu L, Li Z, Xu B, Ning P, Chen C, Xu J, Chen X, Gu C (2015) Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes. Appl Phys Lett 107(20):201602. https://doi.org/10.1063/1.4935976

    Article  CAS  Google Scholar 

  43. Liu L, Li Z, Xu B, Xu J, Chen C, Gu C (2016) Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons. Plasmonics 12(2):439–444. https://doi.org/10.1007/s11468-016-0283-5

    Article  CAS  Google Scholar 

  44. Ma HF, Shen X, Cheng Q, Jiang WX, Cui TJ (2013) Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev 8(1):146–151. https://doi.org/10.1002/lpor.201300118

    Article  CAS  Google Scholar 

  45. Liu L, Li Z, Gu C, Ning P, Xu B, Niu Z, Zhao Y (2014) Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films. J Appl Phys 116(1):013501. https://doi.org/10.1063/1.4886222

    Article  CAS  Google Scholar 

  46. Xu B, Li Z, Liu L, Xu J, Chen C, Ning P, Chen X, Gu C (2015) Tunable band-notched coplanar waveguide based on localized spoof surface plasmons. Opt Lett 40(20):4683. https://doi.org/10.1364/ol.40.004683

    Article  PubMed  Google Scholar 

  47. Yin JY, Ren J, Zhang HC, Zhang Q, Cui TJ (2016) Capacitive-coupled Series Spoof Surface Plasmon Polaritons. Sci Rep 6(1). https://doi.org/10.1038/srep24605

  48. Liao Z, Zhao J, Pan BC, Shen XP, Cui TJ (2014) Broadband transition between microstrip line and conformal surface plasmon waveguide. J Phys D Appl Phys 47(31):315103. https://doi.org/10.1088/0022-3727/47/31/315103

    Article  CAS  Google Scholar 

  49. Zhang HC, Liu S, Shen X, Chen LH, Li L, Cui TJ (2014) Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photonics Rev 9(1):83–90. https://doi.org/10.1002/lpor.201400131

    Article  CAS  Google Scholar 

  50. Zhang W, Zhu G, Sun L, Lin F (2015) Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. Appl Phys Lett 106(2):021104. https://doi.org/10.1063/1.4905675

    Article  CAS  Google Scholar 

  51. Liu L, Li Z, Gu C, Xu B, Ning P, Chen C, Yan J, Niu Z, Zhao Y (2015) Smooth bridge between guided waves and spoof surface plasmon polaritons. Opt Lett 40(8):1810. https://doi.org/10.1364/ol.40.001810

    Article  PubMed  Google Scholar 

  52. Xiang H, Meng Y, Zhang Q, Qin FF, Xiao JJ, Han D, Wen W (2015) Spoof surface plasmon polaritons on ultrathin metal strips with tapered grooves. Opt Commun 356:59–63. https://doi.org/10.1016/j.optcom.2015.07.060

    Article  CAS  Google Scholar 

  53. Kianinejad A, Chen ZN, Qiu CW (2015) Design and modeling of Spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans Microw Theory Tech 63(6):1817–1825. https://doi.org/10.1109/tmtt.2015.2422694

    Article  Google Scholar 

  54. Xu J, Cui Y, Guo J, Xu Z, Qian C, Li W (2016) Broadband transition between microstrip line and spoof SP waveguide. Electron Lett 52(20):1694–1695. https://doi.org/10.1049/el.2016.2027

    Article  CAS  Google Scholar 

  55. Cao D, Li Y, Wang J (2017) Wideband compact slotline-to-spoof-surface plasmon-polaritons transition for millimeter waves. IEEE Antennas Wirel Propag Lett 16:3143–3146. https://doi.org/10.1109/lawp.2017.2765700

    Article  Google Scholar 

  56. He PH, Zhang HC, Tang WX, Wang ZX, Yan RT, Cui TJ (2017) A multi-layer spoof surface plasmon polariton waveguide with corrugated ground. IEEE Access 5:25306–25311. https://doi.org/10.1109/access.2017.2768481

    Article  Google Scholar 

  57. Yan RT, Zhang HC, He PH, Wang ZX, Zhang X, Fu X, Cui TJ (2020) A broadband and high-efficiency compact transition from microstrip line to Spoof surface plasmon polaritons. IEEE Microwave Wirel Compon Lett 30(1):23–26. https://doi.org/10.1109/lmwc.2019.2956122

    Article  Google Scholar 

  58. Tang W, Wang J, Yan X, Liu J, Gao X, Zhang L, Cui TJ (2020) Broadband and high-efficiency excitation of Spoof surface plasmon polaritons through rectangular waveguide. Front Phys 8. https://doi.org/10.3389/fphy.2020.582692

  59. Zhu JF, Liao SW, Li SF, Xue Q (2017) Half-spaced substrate integrated spoof surface plasmon polaritons based transmission line. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-07799-0

  60. Guo YJ, Da Xu K, Tang X (2018) Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters. Opt Express 26(8):10589. https://doi.org/10.1364/oe.26.010589

    Article  CAS  PubMed  Google Scholar 

  61. Zhang QL, Chan CH (2020) Compact Spoof surface plasmon polaritons waveguide integrated with blind vias and its applications. IEEE Trans Circuits Syst II Express Briefs 67(12):3038–3042. https://doi.org/10.1109/tcsii.2020.3001297

    Article  Google Scholar 

  62. Wu Y, Pan L, Wang W, Yang Y, Wei Y, Wu H, Ma L (2020) A new self-packaged substrate integrated air-filled spoof surface plasmon polaritons line with inherent low loss and deep upper frequency suppression. IEEE Trans Plasma Sci 48(10):3516–3523. https://doi.org/10.1109/tps.2020.3024758

    Article  Google Scholar 

  63. Pan BC, Liao Z, Zhao J, Cui TJ (2014) Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Opt Express 22(11):13940. https://doi.org/10.1364/oe.22.013940

    Article  CAS  PubMed  Google Scholar 

  64. Pan BC, Zhang HC, Cui TJ (2016) Multilayer transmissions of Spoof surface plasmon polaritons for multifunctional applications. Adv Mater Technol 2(1):1600159. https://doi.org/10.1002/admt.201600159

  65. Gao X, Hui Shi J, Shen X, Feng Ma H, Xiang Jiang W, Li L, Jun Cui T (2013) Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Appl Phys Lett 102(15):151912. https://doi.org/10.1063/1.4802739

    Article  CAS  Google Scholar 

  66. Wang L, Cui X, Yang H, Du Z, Zhao Y (2019) Miniaturized Spoof surface plasmon polaritons low-pass filter with a novel transition structure. IEEE Photonics Technol Lett 31(15):1273–1276. https://doi.org/10.1109/lpt.2019.2925509

    Article  CAS  Google Scholar 

  67. Zhang X, Fan J, Chen J (2019) Bandwidth‐controllable band‐stop filter using spoof surface plasmon polaritons. Int J RF Microwave Comput Aided Eng 30(1). https://doi.org/10.1002/mmce.21923

  68. Wang J, Zhao L, Hao ZC, Cui TJ (2018) An ultra-thin coplanar waveguide filter based on the spoof surface plasmon polaritons. Appl Phys Lett 113(7):071101. https://doi.org/10.1063/1.5045069

    Article  CAS  Google Scholar 

  69. Zhang Q, Zhang HC, Wu H, Cui TJ (2015) A hybrid circuit for Spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters. Sci Rep 5(1). https://doi.org/10.1038/srep16531

  70. Zhao L, Zhang X, Wang J, Yu W, Li J, Su H, Shen X (2016) A novel broadband band-pass filter based on Spoof surface plasmon polaritons. Sci Rep 6(1). https://doi.org/10.1038/srep36069

  71. Hu MZ, Zhang HC, Yin JY, Ding Z, Liu JF, Tang WX, Cui TJ (2016) Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures. Sci Rep 6(1). https://doi.org/10.1038/srep37605

  72. Liu X, Zhu L, Feng Y (2016) Spoof surface plasmon-based bandpass filter with extremely wide upper stopband. Chin Phys B 25(3):034101. https://doi.org/10.1088/1674-1056/25/3/034101

    Article  CAS  Google Scholar 

  73. Gao X, Che W, Feng W (2018) Novel non-periodic spoof surface plasmon polaritons with H-shaped cells and its application to high selectivity wideband bandpass filter. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-20533-8

  74. Guo YJ, Xu KD, Liu Y, Tang X (2018) Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wideband bandpass filters. IEEE Access 6:10249–10256. https://doi.org/10.1109/access.2018.2808335

    Article  Google Scholar 

  75. Jaiswal RK, Pandit N, Pathak NP (2019a) Spoof plasmonic-based band-pass filter with high selectivity and wide rejection bandwidth. IEEE Photonics Technol Lett 31(15):1293–1296. https://doi.org/10.1109/lpt.2019.2926094

  76. Jaiswal RK, Pandit N, Pathak NP (2019b) Center frequency and bandwidth reconfigurable Spoof surface plasmonic metamaterial band-pass filter. Plasmonics 14(6):1539–1546. https://doi.org/10.1007/s11468-019-00948-3

  77. Jaiswal RK, Pandit N, Pathak NP (2018) Spoof surface plasmon polariton-based reconfigurable band-pass filter using planar ring resonator. Plasmonics 14(3):631–646. https://doi.org/10.1007/s11468-018-0841-0

    Article  Google Scholar 

  78. Jaiswal RK, Pandit N, Pathak NP (2019c) Spoof surface plasmon polaritons based reconfigurable band-pass filter. IEEE Photonics Technol Lett 31(3):218–221. https://doi.org/10.1109/lpt.2018.2889007

  79. Mittal G, Pathak NP (2020) Spoof surface plasmon polaritons based microwave bandpass filter. Microw Opt Technol Lett 63(1):51–57. https://doi.org/10.1002/mop.32551

    Article  Google Scholar 

  80. Jidi L, Cao X, Gao J, Yang H, Li S, Li T (2020) An ultra-thin and compact band-pass filter based on Spoof surface plasmon polaritons. IEEE Access 8:171416–171422. https://doi.org/10.1109/access.2020.3024596

    Article  Google Scholar 

  81. Wang M, Sun S, Ma HF, Cui TJ (2020) Supercompact and ultrawideband surface plasmonic bandpass filter. IEEE Trans Microw Theory Tech 68(2):732–740. https://doi.org/10.1109/tmtt.2019.2952123

    Article  Google Scholar 

  82. Feng W, Feng Y, Shi Y, Shi S, Che W (2020) Novel differential bandpass filter using Spoof surface plasmon polaritons. IEEE Trans Plasma Sci 48(6):2083–2088. https://doi.org/10.1109/tps.2020.2987037

    Article  Google Scholar 

  83. Guo YJ, Xu KD, Deng X, Cheng X, Chen Q (2020) Millimeter-wave on-chip bandpass filter based on Spoof surface plasmon polaritons. IEEE Electron Device Lett 41(8):1165–1168. https://doi.org/10.1109/led.2020.3003804

    Article  CAS  Google Scholar 

  84. Chen ZM, Liu Y, Liang X, Wang J, Li Y, Zhu J, Jiang W, Shen X, Zhao L, Cui TJ (2020) A high efficiency band-pass filter based on CPW and quasi-Spoof surface plasmon polaritons. IEEE Access 8:4311–4317. https://doi.org/10.1109/access.2019.2963062

    Article  Google Scholar 

  85. Chen P, Li L, Yang K, Hua F (2020) Design of substrate integrated plasmonic waveguide bandpass filter with T-shaped spoof surface plasmon polaritons. Electromagnetics 40(8):563–575. https://doi.org/10.1080/02726343.2020.1838055

    Article  Google Scholar 

  86. Zhao H, Zhou P, Xu Z, Li S, Yang M, Liu L, Yin X (2020) Tri-band band-pass filter based on multi-mode Spoof surface plasmon polaritons. IEEE Access 8:14767–14776. https://doi.org/10.1109/access.2020.2966257

    Article  Google Scholar 

  87. Zhang Q, Zhang HC, Yin JY, Pan BC, Cui TJ (2016) A series of compact rejection filters based on the interaction between spoof SPPs and CSRRs. Sci Rep 6(1). https://doi.org/10.1038/srep28256

  88. Li Z, Xu J, Chen C, Sun Y, Xu B, Liu L, Gu C (2016) Coplanar waveguide wideband band-stop filter based on localized spoof surface plasmons. Appl Opt 55(36):10323. https://doi.org/10.1364/ao.55.010323

    Article  PubMed  Google Scholar 

  89. Zhao L, Liu S, Wang J, Shen X, Cui TJ (2019) Band-stop filter based on spoof surface plasmon polaritons. Electron Lett 55(10):607–609. https://doi.org/10.1049/el.2019.0388

    Article  Google Scholar 

  90. Ling H, Zhang Y, Qian P, Chen P, Shi Y, Wang Y, Xin Q, Huan S, Wang Q, Song A (2020) Spoof surface plasmon polariton band‐stop filter with single‐loop split ring resonators. Int J RF Microwave Comput Aided Eng 30(8). https://doi.org/10.1002/mmce.22267

  91. Zhao S, Zhang HC, Zhao J, Tang WX (2017) An ultra-compact rejection filter based on spoof surface plasmon polaritons. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-11332-8

  92. Li L, Dong L, Chen P, Yang K (2019) Multi-band rejection filters based on spoof surface plasmon polaritons and folded split-ring resonators. Int J Microw Wirel Technol 11(08):774–781. https://doi.org/10.1017/s1759078719000369

    Article  Google Scholar 

  93. Wang ZX, Zhang HC, Lu J, Xu P, Wu LW, Wu RY, Cui TJ (2018) Compact filters with adjustable multi-band rejections based on spoof surface plasmon polaritons. J Phys D Appl Phys 52(2):025107. https://doi.org/10.1088/1361-6463/aae885

    Article  CAS  Google Scholar 

  94. Aziz A, Zhang HC, He PH, Tang WX, Ren Y, Madni HA, Cui TJ (2019) Multiple band-rejection filters in dual-frequency bands based on spoof surface plasmon polaritons. J Opt 22(1):015001. https://doi.org/10.1088/2040-8986/ab5626

    Article  Google Scholar 

  95. Zhang D, Zhang K, Wu Q, Jiang T (2020) A compact wideband filter based on Spoof surface plasmon polaritons with a wide upper rejection band. IEEE Photonics Technol Lett 32(24):1511–1514. https://doi.org/10.1109/lpt.2020.3029290

    Article  CAS  Google Scholar 

  96. Farokhipour E, Mehrabi M, Komjani N, Ding C (2020) A Spoof surface plasmon polaritons (SSPPs) based dual-band-rejection filter with wide rejection bandwidth. Sensors 20(24):7311. https://doi.org/10.3390/s20247311

    Article  PubMed Central  Google Scholar 

  97. Kianinejad A, Chen ZN, Qiu CW (2017) A single-layered Spoof-plasmon-mode leaky wave antenna with consistent gain. IEEE Trans Antennas Propag 65(2):681–687. https://doi.org/10.1109/tap.2016.2633161

    Article  Google Scholar 

  98. Zhang Q, Zhang Q, Chen Y (2017) Spoof surface plasmon polariton leaky-wave antennas using periodically loaded patches above PEC and AMC ground planes. IEEE Antennas Wirel Propag Lett 16:3014–3017. https://doi.org/10.1109/lawp.2017.2758368

    Article  Google Scholar 

  99. Kandwal A, Zhang Q, Tang XL, Liu LW, Zhang G (2018) Low-profile Spoof surface plasmon polaritons traveling-wave antenna for near-endfire radiation. IEEE Antennas Wirel Propag Lett 17(2):184–187. https://doi.org/10.1109/lawp.2017.2779455

    Article  Google Scholar 

  100. Fu Z, Zhang T, Wu T, Lan Y, Huang W, He L (2019) Wide-angle frequency scanning leaky wave antenna loaded CSRR patch based on SSPP transmission line. Int J Antennas Propag 2019:1–11. https://doi.org/10.1155/2019/2613591

    Article  Google Scholar 

  101. Tian D, Xu R, Peng G, Li J, Xu Z, Zhang A, Ren Y (2018) Low-profile high-efficiency bidirectional endfire antenna based on Spoof surface plasmon polaritons. IEEE Antennas Wirel Propag Lett 17(5):837–840. https://doi.org/10.1109/lawp.2018.2818109

    Article  Google Scholar 

  102. Zhang Q, Zhang Q, Chen Y (2018) High-efficiency circularly polarised leaky-wave antenna fed by spoof surface plasmon polaritons. IET Microwaves Antennas Propag 12(10):1639–1644. https://doi.org/10.1049/iet-map.2017.1054

    Article  Google Scholar 

  103. Ren B, Li W, Qin Z, Wang Y, Zhang L, Zhang B (2019) Leaky wave antenna based on periodically truncated SSPP waveguide. Plasmonics 15(2):551–558. https://doi.org/10.1007/s11468-019-01081-x

  104. Zhang XF, Fan J, Chen JX (2019) High gain and high-efficiency millimeter-wave antenna based on Spoof surface plasmon polaritons. IEEE Trans Antennas Propag 67(1):687–691. https://doi.org/10.1109/tap.2018.2879847

    Article  Google Scholar 

  105. Yang L, Xu F, Jiang T, Qiang J, Liu S, Zhan J (2020) A wideband high-gain endfire antenna based on Spoof surface plasmon polaritons. IEEE Antennas Wirel Propag Lett 19(12):2522–2525. https://doi.org/10.1109/lawp.2020.3038492

    Article  Google Scholar 

  106. Zhang QL, Chen BJ, Chan KF, Chan CH (2020) High-gain millimeter-wave antennas based on Spoof surface plasmon polaritons. IEEE Trans Antennas Propag 68(6):4320–4331. https://doi.org/10.1109/tap.2020.2970122

    Article  Google Scholar 

  107. Yin JY, Ren J, Zhang Q, Zhang HC, Liu YQ, Li YB, Wan X, Cui TJ (2016) Frequency-controlled broad-angle beam scanning of patch array fed by Spoof surface plasmon polaritons. IEEE Trans Antennas Propag 64(12):5181–5189. https://doi.org/10.1109/tap.2016.2623663

    Article  Google Scholar 

  108. Guan DF, You P, Zhang Q, Lu ZH, Yong SW, Xiao K (2017) A wide-angle and circularly polarized beam-scanning antenna based on microstrip Spoof surface plasmon polariton transmission line. IEEE Antennas Wirel Propag Lett 16:2538–2541. https://doi.org/10.1109/lawp.2017.2731877

    Article  Google Scholar 

  109. Fan Y, Wang J, Li Y, Zhang J, Qu S, Han Y, Chen H (2018) Frequency scanning radiation by decoupling Spoof surface plasmon polaritons via phase gradient metasurface. IEEE Trans Antennas Propag 66(1):203–208. https://doi.org/10.1109/tap.2017.2767625

    Article  Google Scholar 

  110. Chen H, Ma H, Li Y, Wang J, Han Y, Yan M, Qu S (2018) Wideband frequency scanning Spoof surface plasmon polariton planar antenna based on transmissive phase gradient metasurface. IEEE Antennas Wirel Propag Lett 17(3):463–467. https://doi.org/10.1109/lawp.2018.2795341

    Article  Google Scholar 

  111. Zhuang K, Geng J, Wang K, Zhou H, Liang Y, Liang X, Zhu W, Jin R, Ma W (2019) Pattern reconfigurable antenna applying Spoof surface plasmon polaritons for wide angle beam steering. IEEE Access 7:15444–15451. https://doi.org/10.1109/access.2019.2895106

    Article  Google Scholar 

  112. Lv X, Cao W, Zeng Z, Shi S (2018) A circularly polarized frequency beam-scanning antenna fed by a microstrip Spoof SPP transmission line. IEEE Antennas Wirel Propag Lett 17(7):1329–1333. https://doi.org/10.1109/lawp.2018.2844288

    Article  Google Scholar 

  113. Han Y, Wang J, Gong S, Li Y, Zhang J, Qu S (2020) Dual-band broadside radiation antenna via near-field electric and magnetic couplings of nested metamaterial resonators. Microw Opt Technol Lett 62(10):3225–3231. https://doi.org/10.1002/mop.32429

    Article  Google Scholar 

  114. Liu X, Feng Y, Chen K, Zhu B, Zhao J, Jiang T (2014) Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures. Opt Express 22(17):20107. https://doi.org/10.1364/oe.22.020107

    Article  PubMed  Google Scholar 

  115. Yang X, Luo J, Gu D, Su P, Zhang M, Zhu Z, Yuan J (2020) High-efficiency electrically direction-controllable spoof surface plasmon polaritons coupler. J Appl Phys 127(23):233105. https://doi.org/10.1063/1.5134976

    Article  CAS  Google Scholar 

  116. Xiao B, Kong S, Chen J, Gu M (2016) A microwave power divider based on spoof surface plasmon polaritons. Opt Quant Electron 48(3). https://doi.org/10.1007/s11082-016-0456-7

  117. Wu Y, Li M, Yan G, Deng L, Liu Y, Ghassemlooy Z (2016) Single-conductor co-planar quasi-symmetry unequal power divider based on spoof surface plasmon polaritons of bow-tie cells. AIP Adv 6(10):105110. https://doi.org/10.1063/1.4966051

    Article  CAS  Google Scholar 

  118. Farokhipour E, Komjani N, Chaychizadeh MA (2018) An ultra-wideband three-way power divider based on spoof surface plasmon polaritons. J Appl Phys 124(23):235310. https://doi.org/10.1063/1.5050495

    Article  CAS  Google Scholar 

  119. Zhou S, Lin JY, Wong SW, Deng F, Zhu L, Yang Y, He Y, Tu ZH (2018) Spoof surface plasmon polaritons power divider with large isolation. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-24404-0

  120. Zhang X, Tang WX, Zhang HC, Xu J, Bai GD, Liu JF, Cui TJ (2018) A Spoof surface plasmon transmission line loaded with varactors and short-circuit stubs and its application in Wilkinson power dividers. Adv Mater Technol 3(6):1800046. https://doi.org/10.1002/admt.201800046

  121. Wu B, Zu HR, Xue BY, Zhao YT, Cheng QS (2019) Flexible wideband power divider with high isolation incorporating spoof surface plasmon polaritons transition with graphene flake. Appl Phys Express 12(2):022008. https://doi.org/10.7567/1882-0786/aafed7

    Article  CAS  Google Scholar 

  122. Zhou SY, Wong SW, Lin JY, Zhu L, He Y, Tu ZH (2019) Four-way Spoof surface plasmon polaritons splitter/combiner. IEEE Microwave Wirel Compon Lett 29(2):98–100. https://doi.org/10.1109/lmwc.2018.2886318

    Article  Google Scholar 

  123. Aziz A (2019) A compact broadband power divider based on spoof surface plasmon polaritons. Laser Phys 30(1):016207. https://doi.org/10.1088/1555-6611/ab5806

    Article  Google Scholar 

  124. Jun Cui T, Shen X (2013) THz and microwave surface plasmon polaritons on ultrathin corrugated metallic strips. Terahertz Sci Technol 6(2). https://doi.org/10.11906/TST.147-164.2013.06.09

  125. Gao X, Cui TJ (2015) Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications. Nanotechnol Rev 4(3). https://doi.org/10.1515/ntrev-2014-0032

  126. Tang WX, Zhang HC, Ma HF, Jiang WX, Cui TJ (2018) Concept, theory, design, and applications of Spoof surface plasmon polaritons at microwave frequencies. Adv Mater Technol 7(1):1800421. https://doi.org/10.1002/adom.201800421

  127. Gao Z, Wu L, Gao F, Luo Y, Zhang B (2018) Spoof plasmonics: from metamaterial concept to topological description. Adv Mater 30(31):1706683. https://doi.org/10.1002/adma.201706683

    Article  CAS  Google Scholar 

  128. Anwar RS, Ning H, Mao L (2018) Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digit Commun Netw 4(4):244–257. https://doi.org/10.1016/j.dcan.2017.08.004

  129. Zhang HC, He PH, Tang WX, Luo Y, Cui TJ (2019) Planar Spoof SPP transmission lines: applications in microwave circuits. IEEE Microwave Mag 20(11):73–91. https://doi.org/10.1109/mmm.2019.2935363

    Article  Google Scholar 

  130. Zhang J, Zhang HC, Gao XX, Zhang LP, Niu LY, He PH, Cui TJ (2019) Integrated spoof plasmonic circuits. Sci Bull 64(12):843–855. https://doi.org/10.1016/j.scib.2019.01.022

    Article  Google Scholar 

  131. Ding F, Bozhevolnyi SI (2019) A review of unidirectional surface plasmon polariton metacouplers. IEEE J Sel Top Quantum Electron 25(3):1–11. https://doi.org/10.1109/jstqe.2019.2894067

    Article  CAS  Google Scholar 

  132. Tang W, Cui TJ (2019) The engineering way from spoof surface plasmon polaritons to radiations. EPJ Appl Metamaterials 6:9. https://doi.org/10.1051/epjam/2019007

  133. Wu RY, Cui TJ (2020) Microwave metamaterials: from exotic physics to novel information systems. Front Inf Technol Electron Eng 21(1):4–26. https://doi.org/10.1631/fitee.1900465

    Article  Google Scholar 

  134. Hood WW, Wilson CS (2001) The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 52(2):291–314. https://doi.org/10.1023/a:1017919924342

    Article  Google Scholar 

  135. Mayr P, Scharnhorst A (2014) Scientometrics and information retrieval: weak-links revitalized. Scientometrics 102(3):2193–2199. https://doi.org/10.1007/s11192-014-1484-3

    Article  Google Scholar 

  136. Chen C (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inform Sci Technol 57(3):359–377. https://doi.org/10.1002/asi.20317

    Article  Google Scholar 

  137. Small H (2003) Paradigms, citations, and maps of science: a personal history. J Am Soc Inform Sci Technol 54(5):394–399. https://doi.org/10.1002/asi.10225

    Article  Google Scholar 

  138. CiteSpace download | SourceForge.net (n.d.). https://sourceforge.net/projects/citespace/. Accessed 30 Jan 2021

  139. Rincon-Patino J, Ramirez-Gonzalez G, Corrales JC (2018) Exploring machine learning: a bibliometric general approach using SciMAT. F1000Research 7:1210. https://doi.org/10.12688/f1000research.15620.1

  140. Ruan J, Chan F, Zhu F, Wang X, Yang J (2016) A visualization review of cloud computing algorithms in the last decade. Sustainability 8(10):1008. https://doi.org/10.3390/su8101008

    Article  Google Scholar 

  141. Darko A, Chan AP, Adabre MA, Edwards DJ, Hosseini MR, Ameyaw EE (2020) Artificial intelligence in the AEC industry: scientometric analysis and visualization of research activities. Autom Constr 112:103081. https://doi.org/10.1016/j.autcon.2020.103081

    Article  Google Scholar 

  142. Wang W, Lu C (2019) Visualization analysis of big data research based on Citespace. Soft Comput 24(11):8173–8186. https://doi.org/10.1007/s00500-019-04384-7

    Article  Google Scholar 

  143. Wei J, Liang G, Alex J, Zhang T, Ma C (2020) Research progress of energy utilization of agricultural waste in China: bibliometric analysis by Citespace. Sustainability 12(3):812. https://doi.org/10.3390/su12030812

    Article  Google Scholar 

  144. Memon KA, Butt RA, Mohammadani KH, Das B, Ullah S, Memon S, Ain NU (2020) A bibliometric analysis and visualization of passive optical network research in the last decade. Opt Switch Netw 39:100586. https://doi.org/10.1016/j.osn.2020.100586

    Article  Google Scholar 

  145. Yin JY, Ren J, Zhang HC, Pan BC, Cui TJ (2015) Broadband frequency-selective Spoof surface plasmon polaritons on ultrathin metallic structure. Sci Rep 5(1). https://doi.org/10.1038/srep08165

  146. Xu JJ, Zhang HC, Zhang Q, Cui TJ (2015) Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Appl Phys Lett 106(2):021102. https://doi.org/10.1063/1.4905580

    Article  CAS  Google Scholar 

  147. Guan DF, You P, Zhang Q, Yang ZB, Liu H, Yong SW (2018) Slow-wave half-mode substrate integrated waveguide using Spoof surface plasmon polariton structure. IEEE Trans Microw Theory Tech 66(6):2946–2952. https://doi.org/10.1109/tmtt.2018.2825385

    Article  Google Scholar 

  148. Guan D, You P, Yang Z, Xu S, Huang X, Yong S (2018) A broadband filter based on hybrid spoof surface plasmon and half-mode substrate integrated waveguide structure. Int J RF Microwave Comput Aided Eng 29(5):e21558. https://doi.org/10.1002/mmce.21558

    Article  Google Scholar 

  149. Chen P, Li L, Yang K, Chen Q (2018) Hybrid Spoof surface plasmon polariton and substrate integrated waveguide broadband bandpass filter with wide out-of-band rejection. IEEE Microwave Wirel Compon Lett 28(11):984–986. https://doi.org/10.1109/lmwc.2018.2869290

    Article  Google Scholar 

  150. Ye L, Chen Y, Xu KD, Li W, Liu QH, Zhang Y (2019) Substrate integrated plasmonic waveguide for microwave bandpass filter applications. IEEE Access 7:75957–75964. https://doi.org/10.1109/access.2019.2920925

    Article  Google Scholar 

  151. Zhao L, Li Y, Chen ZM, Liang XH, Wang J, Shen X, Zhang Q (2019) A band-pass filter based on half-mode substrate integrated waveguide and Spoof surface plasmon polaritons. Sci Rep 9(1). https://doi.org/10.1038/s41598-019-50056-9

  152. Zhang D, Zhang K, Wu Q, Jiang T (2020) Efficient propagation of spoof surface plasmon polaritons supported by substrate integrated waveguide with bandpass features. J Phys D Appl Phys 53(42):425104. https://doi.org/10.1088/1361-6463/ab9f6a

    Article  CAS  Google Scholar 

  153. Feng W, Feng Y, Yang W, Che W, Xue Q (2019) High-performance filtering antenna using spoof surface plasmon polaritons. IEEE Trans Plasma Sci 47(6):2832–2837. https://doi.org/10.1109/tps.2019.2915627

    Article  Google Scholar 

  154. Li M, Wu Y, Qu M, Li Q, Liu Y (2017) A novel power divider with ultra-wideband harmonics suppression based on double-sided parallel spoof surface plasmon polaritons transmission line. Int J RF Microwave Comput Aided Eng 28(4):e21231. https://doi.org/10.1002/mmce.21231

    Article  Google Scholar 

  155. Ye L, Feng H, Li W, Liu QH (2020) Ultra-compact spoof surface plasmon polariton waveguides and notch filters based on double-sided parallel-strip lines. J Phys D Appl Phys 53(26):265502. https://doi.org/10.1088/1361-6463/ab7c99

    Article  CAS  Google Scholar 

  156. Shang H, Liu Y, Li Z, Tian Y (2020) Broadband bandpass filter with double‐layered spoof surface plasmon waveguide as main transmission line. Int J RF Microwave Comput Aided Eng. Published. https://doi.org/10.1002/mmce.22440

  157. Pan BC, Luo GQ, Liao Z, Cai JL, Cai BG (2020) Wideband miniaturized design of complementary Spoof surface plasmon polaritons waveguide based on interdigital structures. Sci Rep 10(1). https://doi.org/10.1038/s41598-020-60244-7

  158. Liao D, Zhang Y, Wang H (2018) Wide-angle frequency-controlled beam-scanning antenna fed by standing wave based on the cutoff characteristics of Spoof surface plasmon polaritons. IEEE Antennas Wirel Propag Lett 17(7):1238–1241. https://doi.org/10.1109/lawp.2018.2841006

    Article  Google Scholar 

  159. Hao Z, Zhang J, Zhao L (2019) A compact leaky-wave antenna using a planar spoof surface plasmon polariton structure. Int J RF Microwave Comput Aided Eng 29(5):e21617. https://doi.org/10.1002/mmce.21617

    Article  Google Scholar 

  160. Xiao B, Tu X, Fyffe A, Wang X, Shi Z (2020) A compact, high gain, spoof surface plasmon polariton sawtooth end-fire antenna. J Mod Opt 67(7):654–660. https://doi.org/10.1080/09500340.2020.1759713

    Article  CAS  Google Scholar 

  161. Liu L, Chen M, Yin X (2020) Single-layer high gain endfire antenna based on Spoof surface plasmon polaritons. IEEE Access 8:64139–64144. https://doi.org/10.1109/access.2020.2984153

    Article  Google Scholar 

  162. Kianinejad A, Chen ZN, Qiu CW (2016) Low-loss Spoof surface plasmon slow-wave transmission lines with compact transition and high isolation. IEEE Trans Microw Theory Tech 64(10):3078–3086. https://doi.org/10.1109/tmtt.2016.2604807

    Article  Google Scholar 

  163. Shen S, Xue B, Yu M, Xu J (2019) A novel three-dimensional integrated Spoof surface plasmon polaritons transmission line. IEEE Access 7:26900–26908. https://doi.org/10.1109/access.2019.2901220

    Article  Google Scholar 

  164. Wei Y, Wu Y, Wang W, Pan L, Yang Y, Liu Y (2020) Double-sided Spoof surface plasmon polaritons-line bandpass filter with excellent dual-band filtering and wide upper band suppressions. IEEE Trans Plasma Sci 48(12):4134–4143. https://doi.org/10.1109/tps.2020.3035589

    Article  CAS  Google Scholar 

  165. Pan L, Wu Y, Wang W, Wei Y, Yang Y (2020) A flexible high-selectivity single-layer coplanar waveguide bandpass filter using interdigital Spoof surface plasmon polaritons of bow-tie cells. IEEE Trans Plasma Sci 48(10):3582–3588. https://doi.org/10.1109/tps.2020.3023441

    Article  Google Scholar 

  166. Tang WX, Zhang HC, Liu JF, Xu J, Cui TJ (2017) Reduction of radiation loss at small-radius bend using spoof surface plasmon polariton transmission line. Sci Rep 7(1). https://doi.org/10.1038/srep41077

  167. Zhang HC, Tang WX, Xu J, Liu S, Liu JF, Cui TJ (2017) Reduction of shielding-box volume using SPP-like transmission lines. IEEE Trans Compon Packag Manuf Technol 7(9):1486–1492. https://doi.org/10.1109/tcpmt.2017.2700950

    Article  CAS  Google Scholar 

  168. Zhang HC, Wang Q, Luo Y, Liu L, He PH, Lu J, Zhang LP, Xu J, Liu L, Gao F, Cui TJ (2019) A wide-angle broadband converter: from odd-mode Spoof surface plasmon polaritons to spatial waves. IEEE Trans Antennas Propag 67(12):7425–7432. https://doi.org/10.1109/tap.2019.2935671

    Article  Google Scholar 

  169. Du X, Li H, Yin Y (2019) Wideband fish-bone antenna utilizing odd-mode spoof surface plasmon polaritons for Endfire radiation. IEEE Trans Antennas Propag 67:4848–4853. https://doi.org/10.1109/tap.2019.2913707

  170. Zhang Y, Wang H, Liao D (2019) A unidirectional beam-scanning antenna excited by corrugated metal–insulator–metal ground supported Spoof surface plasmon polaritons. IEEE Access 7:36481–36488. https://doi.org/10.1109/access.2019.2903337

    Article  Google Scholar 

  171. Liu L, Yang Z, Guan D, Xu S, You P, Huang X, Yong S (2020) An SIW antenna utilizing odd‐mode spoof surface plasmon polaritons for broadside radiation. Int J RF Microwave Comput Aided Eng 30(4). https://doi.org/10.1002/mmce.22177

  172. Dong G, Shi H, He Y, Zhang A, Wei X, Zhuang Y, Du B, Xia S, Xu Z (2016) Wideband helicity dependent spoof surface plasmon polaritons coupling metasurface based on dispersion design. Sci Rep 6(1). https://doi.org/10.1038/srep38460

  173. Dong G, Shi H, Li W, He Y, Zhang A, Xu Z, Wei X, Xia S (2016) A multi-band spoof surface plasmon polariton coupling metasurface based on dispersion engineering. J Appl Phys 120(8):084505. https://doi.org/10.1063/1.4961600

    Article  CAS  Google Scholar 

  174. Li Y, Zhang J, Qu S, Wang J, Feng M, Wang J, Xu Z (2016) k-dispersion engineering of spoof surface plasmon polaritons for beam steering. Opt Express 24(2):842. https://doi.org/10.1364/oe.24.000842

    Article  PubMed  Google Scholar 

  175. Wu C, Cheng Y, Wang W, He B, Gong R (2015) A polarization independent phase gradient metasurface for spoof plasmon polaritons coupling. J Opt 18(2):025101. https://doi.org/10.1088/2040-8978/18/2/025101

    Article  Google Scholar 

  176. Meng Y, Ma H, Wang J, Li Y, Li Z, Qu S (2017) BroadBand spoof surface plasmon polaritons coupler based on dispersion engineering of metamaterials. Appl Phys Lett 111(15):151904. https://doi.org/10.1063/1.4995505

    Article  CAS  Google Scholar 

  177. Shi HY, Zhang AX, Chen JZ, Wang JF, Xia S, Xu Z (2016) Polarization-insensitive unidirectional spoof surface plasmon polaritons coupling by gradient metasurface. Chin Phys B 25(7):078105. https://doi.org/10.1088/1674-1056/25/7/078105

    Article  Google Scholar 

  178. Meng Y, Ma H, Feng M, Wang J, Li Z, Qu S (2018) Independent excitation of spoof surface plasmon polaritons for orthogonal linear polarized incidences. Appl Phys A 124(10). https://doi.org/10.1007/s00339-018-2090-7

  179. Liu T, Meng Y, Ma H, Wang J, Yuan Q, Qu S (2020) Obtaining single mode spoof surface plasmon polaritons under circular polarized incidence. J Phys D Appl Phys 53(11):115003. https://doi.org/10.1088/1361-6463/ab614b

    Article  CAS  Google Scholar 

  180. Liu T, Meng Y, Ma H, Wang J, Zhu R, Chen H, Qu S (2019) Extraordinary spoof surface plasmon polaritons excitation by linear and circular polarization conversions phase gradient metasurface. J Phys D Appl Phys 53(4):045003. https://doi.org/10.1088/1361-6463/ab522e

    Article  CAS  Google Scholar 

  181. Wang D, Wang G, Cai T, Liu K, Li H, Mao R, Wu B (2020) Planar Spoof surface plasmon polariton antenna by using transmissive phase gradient metasurface. Ann Phys 532(6):2000008. https://doi.org/10.1002/andp.202000008

    Article  CAS  Google Scholar 

  182. Zhang Q, Zhang Q, Liu H, Chan CH (2019) Dual-band and dual-polarized leaky-wave antenna based on slotted SIW. IEEE Antennas Wirel Propag Lett 18(3):507–511. https://doi.org/10.1109/lawp.2019.2895339

    Article  Google Scholar 

  183. Zhuang K, Geng JP, Ding Z, Zhao X, Ma W, Zhou H, Xie C, Liang X, Jin RH (2019) A compact endfire radiation antenna based on Spoof surface plasmon polaritons in wide bandwidth. Prog Electromagn Res M 79:147–157. https://doi.org/10.2528/pierm18121408

    Article  CAS  Google Scholar 

  184. Liu L, Wang J, Yin X, Chen Z (2018) Wide-angle beam scanning leaky-wave antenna using Spoof surface plasmon polaritons Structure. Electronics 7(12):348. https://doi.org/10.3390/electronics7120348

    Article  CAS  Google Scholar 

  185. Li S, Zhang Q, Xu Z, Zhao H, Yin X (2020) Phase transforming based on asymmetric Spoof surface plasmon polariton for endfire antenna with sum and difference beams. IEEE Trans Antennas Propag 68(9):6602–6613. https://doi.org/10.1109/tap.2020.2993083

    Article  Google Scholar 

  186. Zhang HC, Cui TJ, Xu J, Tang W, Liu JF (2016) Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial. Adv Mater Technol 2(1):1600202. https://doi.org/10.1002/admt.201600202

    Article  CAS  Google Scholar 

  187. Gao X, Zhang HC, Wu LW, Wang ZX, He PH, Gao Z, Cui TJ (2020) Programmable multifunctional device based on Spoof surface plasmon polaritons. IEEE Trans Antennas Propag 68(5):3770–3779. https://doi.org/10.1109/tap.2020.2969745

    Article  Google Scholar 

  188. Xu J, Zhang HC, Tang W, Guo J, Qian C, Li W (2016) Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles. Appl Phys Lett 108(19):191906. https://doi.org/10.1063/1.4950701

    Article  CAS  Google Scholar 

  189. Zhou YJ, Xiao QX (2017) Electronically controlled rejections of spoof surface plasmons polaritons. J Appl Phys 121(12):123109. https://doi.org/10.1063/1.4979206

    Article  CAS  Google Scholar 

  190. Wang M, Ma HF, Tang WX, Zhang HC, Wang ZX, Cui TJ (2019) Programmable controls of multiple modes of Spoof surface plasmon polaritons to reach reconfigurable plasmonic devices. Adv Mater Technol 4(3):1800603. https://doi.org/10.1002/admt.201800603

  191. Yang Z, Zhang B, Chen W, Yang T (2019) Rejection of Spoof SPPs using the second resonant mode of vertical split-ring resonator. IEEE Microwave Wirel Compon Lett 29(1):23–25. https://doi.org/10.1109/lmwc.2018.2884645

    Article  Google Scholar 

  192. Yang W, Liu L, Su X, Dong L, Liu Y, Li Z (2020) Dynamic modulation band rejection filter based on Spoof surface plasmon polaritons. Electronics 9(6):993. https://doi.org/10.3390/electronics9060993

    Article  CAS  Google Scholar 

  193. Zhang HC, He PH, Gao X, Tang WX, Cui TJ (2018) Pass-band reconfigurable spoof surface plasmon polaritons. J Phys: Condens Matter 30(13):134004. https://doi.org/10.1088/1361-648x/aaab85

    Article  CAS  Google Scholar 

  194. Zhou T, Yang X, Chen J, Zhang M, Lei X, Yuan J, Zhu Z (2020) A broadband reconfigurable bandpass filter based on half-mode substrate integrated waveguide and spoof surface plasmon polarization structure. Opt Quant Electron 52(7). https://doi.org/10.1007/s11082-020-02471-w

  195. Gao X, Zhang J, Zhang HC, Liu L, Ma Q, Xu P, Cui TJ (2020) Dynamic controls of second-harmonic generations in both forward and backward modes using reconfigurable plasmonic metawaveguide. Adv Mater Technol 8(8):1902058. https://doi.org/10.1002/adom.201902058

    Article  CAS  Google Scholar 

  196. Tang W, Hua Y, Cui TJ (2020) A compact component for multi-band rejection and frequency coding in the plasmonic circuit at microwave frequencies. Electronics 10(1):4. https://doi.org/10.3390/electronics10010004

    Article  Google Scholar 

  197. Cui TJ (n.d.). https://ieeexplore.ieee.org/author/37277085000. Accessed 19 June 2021

  198. Zhang HC (n.d.). https://ieeexplore.ieee.org/author/37086469774. Accessed 19 June 2021

  199. Wang J (n.d.). https://ieeexplore.ieee.org/author/37539033300. Accessed 19 June 2021

  200. Qu S (n.d.). https://ieeexplore.ieee.org/author/37531587700. Accessed 19 June 2021

  201. Li Y (n.d.). https://ieeexplore.ieee.org/author/37085351675. Accessed 19 June 2021

  202. Liu L (n.d.). https://ieeexplore.ieee.org/author/37086451291. Accessed 19 June 2021

  203. Ma H (n.d.). https://ieeexplore.ieee.org/author/37577035000. Accessed 19 June 2021

  204. Zhang J (n.d.). https://ieeexplore.ieee.org/author/37657602500. Accessed 19 June 2021

  205. Wang J (n.d.). https://ieeexplore.ieee.org/author/37086052934. Accessed 19 June 2021

  206. Qu C (n.d.) https://ieeexplore.ieee.org/author/37085484479. Accessed 19 June 2021

  207. Pendry JB (n.d.). https://ieeexplore.ieee.org/author/37283431900. Accessed 19 June 2021

  208. Shen X (n.d.). https://ieeexplore.ieee.org/author/37655129500. Accessed 19 June 2021

  209. Ma HF (n.d.). https://ieeexplore.ieee.org/author/37693782300. Accessed 19 June 2021

  210. Garcia-Vidal FJ (n.d.). https://ieeexplore.ieee.org/author/38364035000. Accessed 19 June 2021

  211. Barnes WL (n.d.). https://ieeexplore.ieee.org/author/37270254400. Accessed 19 June 2021

  212. Hibbins AP (n.d.). https://ieeexplore.ieee.org/author/37316985500. Accessed 19 June 2021

  213. Gao X (n.d.). https://ieeexplore.ieee.org/author/38064625000. Accessed 19 June 2021

  214. Maier SA (n.d.). https://ieeexplore.ieee.org/author/37543592500. Accessed 19 June 2021

  215. Yin JY (n.d.). https://ieeexplore.ieee.org/author/37088508299. Accessed 19 June 2021

  216. Yang J, Qi L, Li B, Wu L, Shi D, Uqaili JA, Tao X (2021) A terahertz metamaterial sensor used for distinguishing glucose concentration. Results Phys 26:104332. https://doi.org/10.1016/j.rinp.2021.104332

  217. Tao X, Qi L, Hu H, Fu T, Uqaili JA (2021) Terahertz dual-band asymmetric transmission for a single cross-polarized linear wave. Opt Express 29(14):21044. https://doi.org/10.1364/oe.421367

    Article  CAS  PubMed  Google Scholar 

  218. Yang J, Qi L, Uqaili JA, Shi D, Yin L, Liu Z, Tao X, Dai L (2021) The terahertz metamaterial sensor for imidacloprid detection. Int J RF Microwave Comput Aided Eng. Published. https://doi.org/10.1002/mmce.22840

  219. Uqaili RS, Uqaili JA, Zahra S, Soomro FB, Akbar A (2020) A study on dual-band microstrip rectangular patch antenna for Wi-Fi. Proceedings of Engineering and Technology Innovation 16:01–12. https://doi.org/10.46604/peti.2020.6266

  220. Cao D, Li Y, Wang J (2020) A millimeter-wave spoof surface plasmon polaritons-fed microstrip patch antenna array. IEEE Trans Antennas Propag 68(9):6811–6815. https://doi.org/10.1109/tap.2020.2972696

    Article  Google Scholar 

  221. Uqaili JA, Uqaili RS, Memon S, Soothar KK, Memon KA, Haider MF (2020) Validation and parameter extraction of a compact equivalent circuit model for an RF CMOS transistor. J Comput Electron 19(4):1471–1477. https://doi.org/10.1007/s10825-020-01570-x

    Article  Google Scholar 

  222. Uqaili RS, Soomro FB, Uqaili JA, Bughio AM, Khan KA (2021) Study on compact equivalent circuit model for RF CMOS transistor. Int J Sci Technol Res 10(2):67–73

    Google Scholar 

  223. Franc AL, Pistono E, Meunier G, Gloria D, Ferrari P (2013) A lossy circuit model based on physical interpretation for integrated shielded slow-wave CMOS Coplanar waveguide structures. IEEE Trans Microw Theory Tech 61(2):754–763. https://doi.org/10.1109/tmtt.2012.2231430

    Article  CAS  Google Scholar 

  224. Liang Y, Yu H, Zhang HC, Yang C, Cui TJ (2015) On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS. Sci Rep 5(1). https://doi.org/10.1038/srep14853

  225. Liang Y, Yu H, Wen J, Apriyana AAA, Li N, Luo Y, Sun L (2016) On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS. Sci Rep 6(1). https://doi.org/10.1038/srep30063

  226. Liang Y, Yu H, Feng G, Apriyana AAA, Fu X, Cui TJ (2017) An energy-efficient and low-crosstalk sub-THz I/O by surface plasmonic polariton interconnect in CMOS. IEEE Trans Microw Theory Tech 65(8):2762–2774. https://doi.org/10.1109/tmtt.2017.2666808

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the conceptualization of the study. JAU wrote the article and was predominantly responsible for carrying out the data analysis. JAU and LMQ designed the work; KAM collected and analyzed the data; JAU, HMB, and SM performed the experiments and visualization; HAK, RSU, and FBS contributed to the introduction, methodology, and related studies; JAU finalized the article for submission; LMQ provided many valuable suggestions for this paper and made the read proof.

Corresponding author

Correspondence to Junaid Ahmed Uqaili.

Ethics declarations

Ethics Approval

This paper does not contain any studies with animals performed by any of the authors.

Consent for Participate

Not applicable.

Consent for Publication

All authors agree to publish this papers.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uqaili, J.A., Qi, L., Memon, K.A. et al. Research on Spoof Surface Plasmon Polaritons (SPPs) at Microwave Frequencies: a Bibliometric Review. Plasmonics 17, 1203–1230 (2022). https://doi.org/10.1007/s11468-022-01613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01613-y

Keywords

Navigation