Skip to main content
Log in

Compact and Sensitive H-Shaped Metal–Dielectric–Metal Waveguide Plasmonic Sensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, we designed and evaluated a sensing architecture using a metal–insulator-metal waveguide connected to an H-shape resonator for refractive index change measurement in two unique bands of refractive index: n = 1.8–1.95 and n = 2.1–2.3. A 3-D finite element approach is used to investigate the device sensing characteristics. For the waveguide, the H-shape resonator offers a cavity resonance zone where the substance to be detected is filled. The transmission curve plot revealed that the suggested arrangement generates two resonant dips. The resonant wavelength was found to have a direct and linear relationship with the refractive index of the material being sensed, the length of vertical height, and the width of the cavity’s mid-arm. Sensitivity and figure of merit have the highest values of 1007.78 nm/RIU and 29 \({\mathrm{RIU}}^{-1},\) respectively. The highest quality-factor obtained was 60. The proposed structure can be employed for refractive index sensing at the nanometer scale and increasing spectroscopy applications since it has features like nano size, high sensitivity, a linear relationship between tuning parameters, and a larger sensing span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

All the references cited are available.

References

  1. Dragoman M, Dragoman D (2008) Plasmonics : applications to nanoscale terahertz and optical devices 32:1–41. https://doi.org/10.1016/j.pquantelec.2007.11.001

    Article  CAS  Google Scholar 

  2. Zhang J, Zhang L, Xu W (2012) Surface plasmon polaritons: physics and applications. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/45/11/113001

    Article  Google Scholar 

  3. Maier SA (2007) Chapter 2 surface plasmon polaritons at metal. Plasmon Fundam Appl 0:1–2

  4. Lin X-S, Huang X-G (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33:2874. https://doi.org/10.1364/ol.33.002874

    Article  PubMed  Google Scholar 

  5. Zhang Q, Huang X-G, Lin X-S, Tao J, Jin X-P (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17:7549. https://doi.org/10.1364/oe.17.007549

    Article  CAS  Google Scholar 

  6. Jin XP, Huang XG, Tao J, Lin XS, Zhang Q (2010) A novel nanometeric plasmonic refractive index sensor. IEEE Trans Nanotechnol 9:134–137. https://doi.org/10.1109/TNANO.2009.2038909

    Article  Google Scholar 

  7. Tao J, Wang QJ, Huang XG (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6:753–759. https://doi.org/10.1007/s11468-011-9260-1

    Article  Google Scholar 

  8. Yang R, Lu Z (2012) Subwavelength plasmonic waveguides and plasmonic materials. Int J Opt. https://doi.org/10.1155/2012/258013

    Article  Google Scholar 

  9. Onbasli MC, Okyay AK (2010) Nanoantenna couplers for metal-insulator-metal waveguide interconnects. Plasmon Met Nanostructures Their Opt Prop VIII 7757:77573R. https://doi.org/10.1117/12.876177

    Article  CAS  Google Scholar 

  10. Rahman ZU, Krishna KM, Reddy KK, Babu MV, Mirza S, Fathima SY (2018) Ultra wide band band-pass filters using plasmonic MIM waveguide based ring resonators, IEEE Photonics Technol Lett PP (2018) 1. https://doi.org/10.1109/LPT.2018.2866966

  11. Ebadi SM, Member S, Ebadi SM, Member S, Örtegren J (2020) A multipurpose and highly-compact plasmonic filter based on metal-insulator-metal a multipurpose and highly-compact plasmonic filter based on 12. https://doi.org/10.1109/JPHOT.2020.2974959

  12. Chauhan D, Kumar A, Adhikari R, Saini RK, Chang SH, Dwivedi RP (2021) High performance vanadium dioxide based active nano plasmonic filter and switch. Optik (Stuttg) 225:165672. https://doi.org/10.1016/j.ijleo.2020.165672

    Article  CAS  Google Scholar 

  13. Taheri AN, Kaatuzian H (2015) Numerical investigation of a nano-scale electro-plasmonic switch based on metal-insulator-metal stub filter. Opt Quantum Electron 47:159–168. https://doi.org/10.1007/s11082-014-9895-1

    Article  CAS  Google Scholar 

  14. Wen K, Yan L, Pan W, Luo B, Guo Z, Guo Y (2012) Wavelength demultiplexing structure based on a plasmonic metal-insulator-metal waveguide. J Opt (United Kingdom) 14. https://doi.org/10.1088/2040-8978/14/7/075001

  15. Chauhan D, Mola GT, Dwivedi RP (2020) An ultra-compact plasmonic modulator/switch using VO2 and elasto-optic effect. Optik (Stuttg) 201:163531. https://doi.org/10.1016/j.ijleo.2019.163531

    Article  CAS  Google Scholar 

  16. Dwivedi RP, Lee HS, Song JH, An S, Lee EH (2011) Plasmonic modulator utilizing three parallel metal-dielectric-metal waveguide directional coupler and elasto-optic effects. Opt Commun 284:1418–1423. https://doi.org/10.1016/j.optcom.2010.10.038

    Article  CAS  Google Scholar 

  17. Wahsheh RA, Lu Z, Abushagur MAG (2009) Nanoplasmonic couplers and splitters. Opt Express 17:19033. https://doi.org/10.1364/oe.17.019033

    Article  PubMed  Google Scholar 

  18. Guo Y, Yan L, Pan W, Luo B, Wen K, Guo Z, Li H, Luo X (2011) A plasmonic splitter based on slot cavity. Opt Express 19:13831. https://doi.org/10.1364/oe.19.013831

    Article  PubMed  Google Scholar 

  19. Wu T, Liu Y, Yu Z, Peng Y, Shu C, Ye H (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22:7669. https://doi.org/10.1364/oe.22.007669

    Article  CAS  PubMed  Google Scholar 

  20. Binfeng Y, Guohua H, Ruohu Z, Yiping C (2014) Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating. Opt Express 22:28662. https://doi.org/10.1364/oe.22.028662

    Article  PubMed  Google Scholar 

  21. Rakhshani MR, Mansouri-Birjandi MA (2017) High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens Actuators B Chem 249:168–176. https://doi.org/10.1016/j.snb.2017.04.064

    Article  CAS  Google Scholar 

  22. Butt MA, Khonina SN, Kazanskiy NL (2021) Metal-insulator-metal nano square ring resonator for gas sensing applications. Waves Random Complex Media 31:146–156. https://doi.org/10.1080/17455030.2019.1568609

    Article  Google Scholar 

  23. Butt MA, Kazanskiy NL, Khonina SN (2020) Highly sensitive refractive index sensor based on plasmonic bow tie configuration. Photonic Sens 10:223–232. https://doi.org/10.1007/s13320-020-0588-z

    Article  CAS  Google Scholar 

  24. Chen Z, Yu L (2014) Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photonics J. https://doi.org/10.1109/JPHOT.2014.2368779

    Article  Google Scholar 

  25. Chen Z, Cao X, Song X (2015) Side-coupled cavity-induced Fano resonance and its application in nanosensor. https://doi.org/10.1007/s11468-015-0035-y

  26. Zhang Y, Li S, Zhang X, Chen Y, Wang L, Zhang Y, Yu L (2016) Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor. Opt Commun 370:203–208. https://doi.org/10.1016/j.optcom.2016.03.001

    Article  CAS  Google Scholar 

  27. Tang Y, Zhang Z, Wang R, Hai Z, Xue C, Zhang W, Yan S (2017) Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors (Switzerland). https://doi.org/10.3390/s17040784

    Article  PubMed Central  Google Scholar 

  28. Deng Y, Cao G, Yang H, Li G, Chen X, Lu W (2017) Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. Sci Rep 7:2–9. https://doi.org/10.1038/s41598-017-10626-1

    Article  CAS  Google Scholar 

  29. Zhang Y, Kuang Y, Zhang Z, Tang Y, Han J, Wang R, Cui J, Hou Y, Liu W (2019) High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity. Appl Phys A. https://doi.org/10.1007/s00339-018-2283-0

    Article  Google Scholar 

  30. Wang S, Zhao T, Yu S, Ma W (2020) High-performance nano-sensing and slow-light applications based on tunable multiple Fano resonances and EIT-like effects in coupled plasmonic resonator system. IEEE Access 8:40599–40611. https://doi.org/10.1109/ACCESS.2020.2974491

    Article  Google Scholar 

  31. Xiao G, Xu Y, Yang H, Ou Z, Chen J, Li H, Liu X, Zeng L, Li J (2021) High sensitivity plasmonic sensor based on fano resonance with inverted u-shaped resonator. Sensors (Switzerland) 21:1–12. https://doi.org/10.3390/s21041164

    Article  CAS  Google Scholar 

  32. Chauhan D, Adhikari R, Saini RK, Chang SH, Dwivedi RP (2020) Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure. Optik (Stuttg) 223:165545. https://doi.org/10.1016/j.ijleo.2020.165545

    Article  CAS  Google Scholar 

  33. Baqir MA, Farmani A, Fatima T, Raza MR, Shaukat SF, Mir A (2018) Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl Opt 57:9447. https://doi.org/10.1364/ao.57.009447

    Article  CAS  PubMed  Google Scholar 

  34. Baqir MA (2019) Wide-band and wide-angle, visible- and near-infrared metamaterial-based absorber made of nanoholed tungsten thin film. Opt Mater Express 9:29–31. https://doi.org/10.1364/OME.9.002358

    Article  Google Scholar 

  35. Naveed MA, Bilal RMH, Baqir MA, Bashir MM, Ali MM, Rahim AA (2021) Ultrawideband fractal metamaterial absorber made of nickel operating in the UV to IR spectrum. Opt Express 29:42911. https://doi.org/10.1364/oe.446423

    Article  CAS  Google Scholar 

  36. Bilal RMH, Baqir MA, Iftikhar A, Naqvi SA, Mughal MJ, Ali MM (2022) Polarization-controllable and angle-insensitive multiband Yagi-Uda-shaped metamaterial absorber in the microwave regime. Opt Mater Express 12:798. https://doi.org/10.1364/ome.451073

    Article  CAS  Google Scholar 

  37. Adhikari R, Chauhan D, Mola GT, Dwivedi RP (2021) A review of the current state-of-the-art in Fano resonance-based plasmonic metal-insulator-metal waveguides for sensing applications. Opto-Electronics Rev 29:148–166. https://doi.org/10.24425/opelre.2021.139601

    Article  Google Scholar 

  38. Adhikari R, Sbeah Z, Chauhan D, Chang SH, Dwivedi RP (2022) A voyage from plasmonic to hybrid waveguide refractive index sensors based on wavelength interrogation Technique: a Review. Brazilian J Phys 52:61. https://doi.org/10.1007/s13538-022-01064-0

    Article  Google Scholar 

  39. Xie YY, Huang YX, Zhao WL, Xu WH, He C (2015) A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity. IEEE Photonics J 7(2):1–12. https://doi.org/10.1109/JPHOT.2015.2419635

    Article  CAS  Google Scholar 

  40. Chen L, Liu Y, Yu Z, Wu D, Ma R, Zhang Y, Ye H (2016) Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity. Opt Express 24:9975. https://doi.org/10.1364/oe.24.009975

    Article  CAS  PubMed  Google Scholar 

  41. Rakhshani MR, Mansouri-Birjandi MA (2016) High-sensitivity plasmonic sensor based on metal-insulator-metal waveguide and hexagonal-ring cavity. IEEE Sens J 16:3041–3046. https://doi.org/10.1109/JSEN.2016.2522560

    Article  CAS  Google Scholar 

  42. Butt MA, Khonina SN, Kazanskiy NL (2019) Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J Mod Opt 66:1038–1043. https://doi.org/10.1080/09500340.2019.1601272

    Article  CAS  Google Scholar 

  43. Butt MA, Khonina SN, Kazanskiy NL (2019) Plasmonic refractive index sensor based on M-I-M square ring resonator. Int Conf Comput Electron Electr Eng ICE Cube 2018:1–4. https://doi.org/10.1109/ICECUBE.2018.8610998

    Article  Google Scholar 

  44. Danaie M, Shahzadi A (2019) Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped si resonator. Plasmonics 14:1453–1465. https://doi.org/10.1007/s11468-019-00926-9

    Article  CAS  Google Scholar 

  45. Li X, Zhang Z, Guo F, Huang Y, Zhang B, Zhang L, Yang Q, Tan Y, Liu X, Bai H, Song Y (2019) Tunable plasmonically induced reflection in HRR-coupled MIM waveguide structure. Optik (Stuttg) 199:163353. https://doi.org/10.1016/j.ijleo.2019.163353

    Article  CAS  Google Scholar 

  46. Al Mahmud R, Faruque MO, Sagor RH (2021) A highly sensitive plasmonic refractive index sensor based on triangular resonator. Opt Commun 483:126634. https://doi.org/10.1016/j.optcom.2020.126634

    Article  CAS  Google Scholar 

  47. Kazanskiy NL, Khonina SN, Butt MA (2020) Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: a brief review. Phys E Low-Dimens Syst Nanostructures 113798. https://doi.org/10.1016/j.physe.2019.113798

  48. Zafar R, Salim M (2015) Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sens J 15:6313–6317. https://doi.org/10.1109/JSEN.2015.2455534

    Article  CAS  Google Scholar 

  49. Chou Chau YF, Chou Chao CT, Huang HJ, Kumara NT, Lim CM CM, Chiang HP (2019) Ultra-high refractive index sensing structure based on a metal-insulator-metal waveguide-coupled T-shape cavity with metal nanorod defects. Nanomaterials. https://doi.org/10.3390/nano9101433

    Article  PubMed  PubMed Central  Google Scholar 

  50. Butt MA, Khonina SN, Kazanskiy NL (2019) A multichannel metallic dual nano-wall square split-ring resonator: design analysis and applications. Laser Phys Lett. https://doi.org/10.1088/1612-202X/ab5574

    Article  Google Scholar 

  51. Rahmatiyar M, Danaie M, Afsahi M (2020) Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt Quantum Electron. https://doi.org/10.1007/s11082-020-02266-z

    Article  Google Scholar 

  52. Kazanskiy NL, Butt MA, Khonina SN (2020) Nanodots decorated MIM semi-ring resonator cavity for biochemical sensing applications. Photonics Nanostructures - Fundam Appl 42:100836. https://doi.org/10.1016/j.photonics.2020.100836

    Article  Google Scholar 

  53. Laskar JM, Kumar PS, Herminghaus S, Daniels KE, Schröter M (2016) High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics. 55(12):3165–3169

  54. Kang S, Nakajima S, Arakawa Y, Konishi G, Watanabe J (2013) Large extraordinary refractive index in highly birefringent nematic liquid crystals of dinaphthyldiacetylene-based materials. J Materials Chem. 27:4222-4226. https://doi.org/10.1039/c3tc30640b

  55. Wypych G (2016) Physical properties of fillers and filled materials. In: Wypych G (ed) Handb Fill, Fourth Ed. ChemTec Publishing p 373–413. https://doi.org/10.1016/B978-1-895198-91-1.50007-5

  56. Xiang L, Huang L (2020) High-sensitivity complex refractive index sensor by designing a slot-waveguide side-coupled Fano resonant cavity. Opt Commun 475:126298. https://doi.org/10.1016/j.optcom.2020.126298

    Article  CAS  Google Scholar 

  57. Zhang Z, Luo L, Xue C, Zhang W, Yan S (2016) Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors (Switzerland) 16:22–24. https://doi.org/10.3390/s16050642

    Article  Google Scholar 

  58. Wang Q, Ouyang Z, Sun Y, Lin M, Liu Q, Zheng G, Fan J (2018). Tunable nanosensor based on Fano resonances created by changing the deviation angle of the metal core in a plasmonic cavity. https://doi.org/10.3390/s18041026

    Article  Google Scholar 

  59. Zhao X, Zhang Z, Yan S (2017) Tunable Fano resonance in asymmetric MIM waveguide structure. Sensors (Switzerland). https://doi.org/10.3390/s17071494

    Article  PubMed Central  Google Scholar 

  60. Liu G, Liu Z, Liu G, Fu X (2020) Plasmonic sensors with an ultra-high figure of merit. Nanotechnology 31:11. https://doi.org/10.1088/1361-6528/ab5a00

    Article  Google Scholar 

  61. Shi X, Ma L, Zhang Z, Tang Y, Zhang Y, Han J, Sun Y (2018) Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system. Opt Commun 427:326–330. https://doi.org/10.1016/j.optcom.2018.06.042

    Article  CAS  Google Scholar 

  62. Jina L, Chen J, Liu X, Tian H, Wang J, Cui J, Rohimah S (2021) Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities. 60:5312–5319

  63. Zubaidah binti Haji Juma S, Chao CT, Chau YF, Mahadi AH, Kooh MR, Kumara NT, Chiang HP (2021) Plasmonic refractive index sensor based on the combination of rectangular and circular resonators including baffles. Chinese J Phys 71:286–299. https://doi.org/10.1016/j.cjph.2021.02.006

    Article  CAS  Google Scholar 

  64. Zhang Z, Yang J, He X, Zhang J, Huang J, Chen D, Han Y (2018) Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors (Switzerland). https://doi.org/10.3390/s18010116

    Article  PubMed Central  Google Scholar 

  65. Amoosoltani N, Mehrabi K, Zarifkar A, Farmani A, Yasrebi N (2021) Double-ring resonator plasmonic refractive index sensor utilizing dual-band unidirectional reflectionless propagation effect. Plasmonics 16:1277–1285. https://doi.org/10.1007/s11468-021-01395-9

    Article  Google Scholar 

  66. Rakhshani MR (2020) Tunable and sensitive refractive index sensors by plasmonic absorbers with circular arrays of nanorods and nanotubes for detecting cancerous cells. Plasmonics 15:2071–2080. https://doi.org/10.1007/s11468-020-01237-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Shoolini University, India.

Funding

The research was not financially supported by any institutions.

Author information

Authors and Affiliations

Authors

Contributions

All authors have the same contributions.

Corresponding author

Correspondence to Ram Prakash Dwivedi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, R., Sbeah, Z., Gupta, R. et al. Compact and Sensitive H-Shaped Metal–Dielectric–Metal Waveguide Plasmonic Sensor. Plasmonics 17, 1593–1606 (2022). https://doi.org/10.1007/s11468-022-01646-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01646-3

Keywords

Navigation