Skip to main content
Log in

Optical Refractive Index Sensors Based on Plasmon-Induced Transparency phenomenon in a Plasmonic Waveguide Coupled to Stub and Nano-disk Resonators

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmon-induced transparency (PIT) in the transparent window provides new insights into the design of optical devices such as optical sensors. Therefore, in this paper, four novel structures based on the PIT phenomenon are proposed to design plasmonic refractive index sensors (RISs). The designed structures consist of metal–insulator-metal (MIM) waveguides, stub resonators (SR), and nano-disk resonators (NDRs) containing metal strips (MSs). By using an MIM waveguide, an SR, and an NDR containing MSs, the first RIS (main RIS) is designed and simulated using the finite difference time domain (FDTD) method. To verify FDTD simulations, the stub-coupled MIM waveguide system which is used to design the main RIS is analyzed using the transmission line method (TLM). The maximum sensitivity and FOM of the main RIS obtain 725.1 nm/RIU and 91.78 RIU−1, respectively. By coupling two SRs, two NDRs containing MSs, and two SRs and NDRs containing MSs simultaneously, the other three RIS structures are designed. Increasing Q factors of the designed RISs results in higher FOM values for these new structures. The maximum FOM values for RIS I, RIS II, and RIS III are achieved at 120.18, 144.27, and 113.07 RIU−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics nature 424(6950):824–830

    CAS  Google Scholar 

  2. Wang F, Shen YR (2006) General properties of local plasmons in metal nanostructures. Phys Rev Lett 97(20):206806

    Article  Google Scholar 

  3. Genet C, Ebbesen TW (2010) Light in tiny holes. Nanoscience And Technology: A Collection of Reviews from Nature Journals 205–212

  4. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91

    Article  CAS  Google Scholar 

  5. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  CAS  Google Scholar 

  6. Khani S, Danaie M, Rezaei P (2020) Realization of a plasmonic optical switch using improved nano-disk resonators with Kerr-type nonlinearity: a theoretical and numerical study on challenges and solutions. Opt Commun 477:126359

    Article  CAS  Google Scholar 

  7. Farmani A (2019) Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B 36(2):401–407

    Article  CAS  Google Scholar 

  8. Yassin HM, Mahran SE, El-Batawy YM (2020) JV characteristics of plasmonic photovoltaics with embedded conical and cylindrical metallic nanoparticles. AEU Int J Electron Commun 124:153326

    Google Scholar 

  9. Khani S, Farmani A, Mir A (2021) Reconfigurable and scalable 2, 4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method. Sci Rep 11(1):1–13

    Article  Google Scholar 

  10. Mahdian MA, Nikoufard M, Soleimannezhad F (2020) Effect of etching depth on the performance of InP-based hybrid plasmonic waveguides. AEU Int J Electron Commun 126:153403

    Google Scholar 

  11. Moznebi AR, Afrooz K, Arsanjani A (2022) Broadband bandpass filter and filtering power divider with enhanced slow-wave effect, compact size, and wide stopband based on butterfly-shaped spoof SPPs. AEU Int J Electron Commun 145:154084

    Google Scholar 

  12. Khani S, Danaie M, Rezaei P (2018) Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt Commun 420:147–156

    Article  CAS  Google Scholar 

  13. Liu H, Sun Z (2021) Narrow-band, low-sideband plasmonic filter of asymmetric bi-layer metallic nanoslit arrays. Opt Express 29(9):13590–13599

    Article  Google Scholar 

  14. Khani S, Danaie M, Rezaei P (2018) Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt Eng 57(10):107102

    Article  Google Scholar 

  15. Shibayama J, Kawai H, Yamauchi J, Nakano H (2019) Analysis of a 3D MIM waveguide-based plasmonic demultiplexer using the TRC-FDTD method. Opt Commun 452:360–365

    Article  CAS  Google Scholar 

  16. Khosravian E, Mashayekhi HR, Farmani A (2020) Tunable plasmonics photodetector in near-infrared wavelengths using graphene chemical doping method. AEU Int J Electron Commun 127:153472

    Google Scholar 

  17. Shirafkan Dizaj L, Abbasian K, Nurmohammadi T (2020) A three-core hybrid plasmonic polarization splitter designing based on the hybrid plasmonic waveguide for utilizing in optical integrated circuits. Plasmonics 15(6):2213–2221

    Article  CAS  Google Scholar 

  18. Huang B, Meng H, Wang Q, Wang H, Zhang X, Yu W, Wang F (2016) Plasmonic-induced transparency and slow-light effect based on stub waveguide with nanodisk resonator. Plasmonics 11(2):543–550

    Article  CAS  Google Scholar 

  19. Wang S, Chung KL, Kong F, Du L, Li K (2022) A compact wide-angle frequency beam-scanning antenna using modulated composite waveguide based on half-mode substrate integrated waveguide and spoof surface plasmon polariton structure. AEU Int J Electron Commun 145:154078

    Google Scholar 

  20. Khani S, Danaie M, Rezaei P (2020) Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures. Photonics Nanostruct Fundam Appl 40:100802

  21. Farmani A, Mir A, Sharifpour Z (2018) Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl Surf Sci 453:358–364

    Article  CAS  Google Scholar 

  22. Armaghani S, Khani S, Danaie M (2019) Design of all-optical graphene switches based on a Mach-Zehnder interferometer employing optical Kerr effect. Superlattices Microstruct 135:106244

    Article  CAS  Google Scholar 

  23. Khani S, Danaie M, Rezaei P (2021) Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines. J Comput Electron 20(1):442–457

    Article  CAS  Google Scholar 

  24. Nozhat N, Alikomak H, Khodadadi M (2017) All-optical XOR and NAND logic gates based on plasmonic nanoparticles. Opt Commun 392:208–213

    Article  CAS  Google Scholar 

  25. Wu X, Tian J, Yang R (2017) A type of all-optical logic gate based on graphene surface plasmon polaritons. Opt Commun 403:185–192

    Article  CAS  Google Scholar 

  26. Klein M, Badada BH, Binder R, Alfrey A, McKie M, Koehler MR, Schaibley JR (2019) 2D semiconductor nonlinear plasmonic modulators. Nat Commun 10(1):1–7

    Article  Google Scholar 

  27. Khani S, Danaie M, Rezaei P (2021) Fano Resonance using surface plasmon polaritons in a nano-disk resonator coupled to perpendicular waveguides for amplitude modulation applications. Plasmonics 16(6):1891–1908

    Article  CAS  Google Scholar 

  28. Khani S, Danaie M, Rezaei P (2022) Plasmonic all-optical modulator based on the coupling of a surface plasmon stub-filter and a meandered MIM waveguide. Opt Quant Electron 54(12):1–21

    Article  Google Scholar 

  29. Farhadi S, Farmani A, Hamidi A (2021) Figure of merit enhancement of surface plasmon resonance biosensor based on Talbot effect. Opt Quant Electron 53(9):1–13

    Article  Google Scholar 

  30. Zagal-Padilla CK, Diaz-Gómez C, Gamboa SA (2022) Electrochemical characterization of a plasmonic effect ethanol sensor based on two-dimensional ZnO synthesized by green chemistry. Mater Sci Semicond Process 137:106240

    Article  CAS  Google Scholar 

  31. Azad S, Sadeghi E, Parvizi R, Mazaheri A (2017) Fast response relative humidity clad-modified multimode optical fiber sensor with hydrothermally dimension controlled ZnO nanorods. Mater Sci Semicond Process 66:200–206

    Article  CAS  Google Scholar 

  32. Dias JS, Leite RL, Ferreira EC (2008) Electronic technique for temperature compensation of fibre Bragg gratings sensors. AEU Int J Electron Commun 62(1):72–76

    Google Scholar 

  33. Singh SK, Dutta D, Das S, Dhar A, Paul MC (2020) Synthetic and structural investigation of ZnO nano-rods, hydrothermally grown over Au coated optical fiber for evanescent field-based detection of aqueous ammonia. Mater Sci Semicond Process 107:104819

    Article  CAS  Google Scholar 

  34. Ahmed AM, Mehaney A (2019) Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci Rep 9(1):1–9

    Article  Google Scholar 

  35. Kou D, Zhang Y, Zhang S, Wu S, Ma W (2019) High-sensitive and stable photonic crystal sensors for visual detection and discrimination of volatile aromatic hydrocarbon vapors. Chem Eng J 375:121987

    Article  CAS  Google Scholar 

  36. Zhao M, Xu H, Xiong C, Zheng M, Zhang B, Xie W, Li H (2018) Investigation of tunable plasmon-induced transparency and slow-light effect based on graphene bands. Appl Phys Express 11(8):082002

    Article  Google Scholar 

  37. Xu H, Zhao M, Chen Z, Zheng M, Xiong C, Zhang B, Li H (2018) Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials. J Appl Phys 123(20):203103

    Article  Google Scholar 

  38. Ghods, M. M., & Afsahi, M. (2022). Ultra-sensitive absorption-based gas detecting using graphene-covered periodic photonic crystal slabs resonating under critical coupling condition at mid-infrared frequencies. IEEE Trans NanoBiosci

  39. Dionne JA, Sweatlock LA, Atwater HA, Polman AJPRB (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73(3):035407

    Article  Google Scholar 

  40. Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9(7–8):20–27

    Article  CAS  Google Scholar 

  41. Rohaninezhad M, Ghayekhloo A, Afsahi M, Denidni TA (2022) Design of a transparent system for mutual coupling reduction of microstrip array antennas with confined water. Physica Status Solidi (a) 2200082

  42. Khani S, Hayati M (2017) Compact microstrip lowpass filter with wide stopband and sharp roll-off. Microw J 60(11):86–92

    Google Scholar 

  43. Deng HG, Tian LL, Xiong RJ, Liu G, Yang K, Zhao HH, Wang WH (2020) Review on plasmon induced transparency based on metal-dielectric-metal waveguides. J Cent South Univ 27(3):698–710

    Article  Google Scholar 

  44. Nurmohammadi T, Abbasian K, Mashayekhi MZ (2022) Graphene-based tunable plasmon-induced transparency utilizing circular and two rectangular gold rings in the near-infrared spectrum. Mater Sci Semicond Process 144:106601

    Article  CAS  Google Scholar 

  45. Zeng C, Cui Y (2013) Low-distortion plasmonic slow-light system at telecommunication regime. Opt Commun  294:372–376

    Article  CAS  Google Scholar 

  46. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401

    Article  Google Scholar 

  47. Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel AP, Ustinov AV, Soukoulis CM (2011) Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys Rev Lett 107(4):043901

    Article  Google Scholar 

  48. Wu C, Ding H, Huang T, Wu X, Chen B, Ren K, Fu S (2018) Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators. Plasmonics 13(1):251–257

    Article  CAS  Google Scholar 

  49. Liu D, Fu W, Shao J, Wang J, Zhang Q, Han B, Teng D (2019) Plasmon-induced transparency and refractive index sensing based on a trapezoid cavity coupled with a hexagonal resonator. Plasmonics 14(3):663–671

    Article  Google Scholar 

  50. Cui Y, Zeng C (2012) Optical bistability based on an analog of electromagnetically induced transparencyin plasmonic waveguide-coupled resonators. Appl Opt 51(31):7482–7486

    Article  Google Scholar 

  51. Khani S, Danaie M, Rezaei P (2020) All-optical plasmonic switches based on asymmetric directional couplers incorporating Bragg gratings. Plasmonics 15(3):869–879

    Article  CAS  Google Scholar 

  52. Shahamat Y, Vahedi M (2019) Mid-infrared plasmonically induced absorption and transparency in a Si-based structure for temperature sensing and switching applications. Opt Commun 430:227–233

    Article  CAS  Google Scholar 

  53. Chen Z, Li H, He Z, Xu H, Zheng M, Zhao M (2017) Multiple plasmon-induced transparency effects in a multimode-cavity-coupled metal–dielectric–metal waveguide. Appl Phys Express 10(9):092201

    Article  Google Scholar 

  54. Zhang X, Meng H, Liu S, Ren X, Tan C, Wei Z, Li S (2017) Plasmonically induced absorption and transparency based on stub waveguide with nanodisk and Fabry-Perot resonator. Plasmonics 12(5):1289–1296

    Article  CAS  Google Scholar 

  55. Wang S, Zhao T, Yu S, Ma W (2020) High-performance nano-sensing and slow-light applications based on tunable multiple Fano resonances and EIT-like effects in coupled plasmonic resonator system. IEEE Access 8:40599–40611

    Article  Google Scholar 

  56. Yan S, Zhang M, Zhao X, Zhang Y, Wang J, Jin W (2017) Refractive index sensor based on a metal–insulator–metal waveguide coupled with a symmetric structure. Sensors 17(12):2879

    Article  Google Scholar 

  57. Zheng M, Li H, Chen Z, Xu H, Zhao M, Xiong C (2018) Transmission performance based on plasmonic waveguide coupled with sectorial-ring stub resonator. IEEE Photonics Technol Lett 30(5):415–418

    Article  CAS  Google Scholar 

  58. Zheng M, Zhao M, Xiong C, Xu H, Zhang B, Xie W, Li H (2019) Spectral characteristic based on sectorial-ring cavity resonator coupled to plasmonic waveguide. Appl Phys B 125(3):1–8

    Article  Google Scholar 

  59. Zheng M, Li H, Xu H, Zhao M, Xiong C, Zhang B (2019) Tunable and selective transmission based on multiple resonance modes in side-coupled sectorial-ring cavity waveguide. Plasmonics 14(2):397–405

    Article  CAS  Google Scholar 

  60. Zheng M, Xiong C, Zhao M, Xu H, Zhang B, Xie W, Li H (2019) Spectral tunability and selectivity based on multiple resonance modes in end-coupled sectorial-ring cavity waveguide. Plasmonics 14(6):1659–1668

    Article  CAS  Google Scholar 

  61. El Shamy RS, Khalil D, Swillam MA (2020) Mid infrared optical gas sensor using plasmonic Mach-Zehnder interferometer. Sci Rep 10(1):1–9

    Article  Google Scholar 

  62. Chou Chau YF, Chou Chao CT, Huang HJ, Chen SH, Kao TS, Chiang HP (2021) A multichannel color filter with the functions of optical sensor and switch. Sci Rep 11(1):1–14

    Article  Google Scholar 

  63. Yaseer AA, Hassan MF, Tathfif I, Rashid KS, Sagor RH (2021) Plasmonic refractive index sensor optimized for color detection

  64. Khani S, Hayati M (2021) An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct 156:106970

    Article  CAS  Google Scholar 

  65. Xie YY, Huang YX, Zhao WL, Xu WH, He C (2015) A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity. IEEE Photonics J 7(2):1–12

    Article  Google Scholar 

  66. Khani S, Hayati M (2022) Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer. Sci Rep 12(1):1–19

    Article  Google Scholar 

  67. Rakhshani MR, Mansouri-Birjandi MA (2016) High-sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity. IEEE Sens J 16(9):3041–3046

    Article  CAS  Google Scholar 

  68. Khani S, Danaie M, Rezaei P (2019) Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods. Physica E 113:25–34

    Article  CAS  Google Scholar 

  69. Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18(17):17922–17927

    Article  CAS  Google Scholar 

  70. Amoosoltani N, Zarifkar A, Farmani A (2019) Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J Comput Electron 18(4):1354–1364

    Article  Google Scholar 

  71. Rakhshani MR, Mansouri-Birjandi MA (2017) High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens Actuators B Chem 249:168–176

    Article  CAS  Google Scholar 

  72. Pannipitiya A, Rukhlenko ID, Premaratne M, Hattori HT, Agrawal GP (2010) Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt Express 18(6):6191–6204

    Article  CAS  Google Scholar 

  73. Chen Z, Li H, Zhan S, Li B, He Z, Xu H, Zheng M (2016) Tunable high quality factor in two multimode plasmonic stubs waveguide. Sci Rep 6(1):1–6

    Google Scholar 

  74. Khani S, Danaie M, Rezaei P (2020) Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. Superlattices Microstruct 141:106481

    Article  CAS  Google Scholar 

  75. Wang Q, Ouyang Z, Lin M, Liu Q (2018) Independently tunable Fano resonances based on the coupled hetero-cavities in a plasmonic MIM system. Materials 11(9):1675

    Article  Google Scholar 

  76. Akhavan A, Ghafoorifard H, Abdolhosseini S, Habibiyan H (2018) Metal–insulator–metal waveguide-coupled asymmetric resonators for sensing and slow light applications. IET Optoelectron 12(5):220–227

    Article  Google Scholar 

  77. Khani S, Danaie M, Rezaei P (2019) Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities. IET Optoelectron 13(4):161–171

    Article  Google Scholar 

  78. Duan G, Lang P, Wang L, Yu L, Xiao J (2014) A band-pass plasmonic filter with dual-square ring resonator. Mod Phys Lett B 28(23):1450188

    Article  CAS  Google Scholar 

  79. Zavvari M, Taleb Hesami Azar M, Arashmehr A (2017) Tunable band-stop plasmonic filter based on square ring resonators in a metal-insulator-metal structure. J Mod Opt 64(20):2221–2227

    Article  Google Scholar 

  80. Zhang Z, Yang J, He X, Han Y, Zhang J, Huang J, Xu S (2018) All-optical multi-channel switching at telecommunication wavelengths based on tunable plasmon-induced transparency. Opt Commun 425:196–203

    Article  CAS  Google Scholar 

  81. Khani S, Hayati M (2022) Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Opt Commun 505

    Article  CAS  Google Scholar 

  82. Zheng GG, Xu LH, Liu YZ, Su W (2015) Optical filter and sensor based on plasmonic-gap-waveguide coupled with T-shaped resonators. Optik 126(23):4056–4060

    Article  CAS  Google Scholar 

  83. Guo J, Yang X, Wang Y, Wang M, Hua E, Yan S (2020) Refractive index nanosensor with simple structure based on fano resonance. IEEE Photonics J 12(4):1–10

    Article  Google Scholar 

  84. Shahamat Y, Ghaffarinejad A, Vahedi M (2020) Plasmon induced transparency and refractive index sensing in two nanocavities and double nanodisk resonators. Optik 202:163618

    Article  CAS  Google Scholar 

  85. Luo S, Li B, Xiong D, Zuo D, Wang X (2017) A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure. Plasmonics 12(2):223–227

    Article  CAS  Google Scholar 

  86. Alipour A, Mir A, Farmani A (2020) Ultra high-sensitivity and tunable dual-band perfect absorber as a plasmonic sensor. Opt Laser Technol 127:106201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Design, analysis, and investigation: Shiva Khani. Writing-original draft preparation: Shiva Khani. Writing-review and editing: Majid Afsahi.

Corresponding author

Correspondence to Shiva Khani.

Ethics declarations

Ethical Approval

We the undersigned declare that the manuscript entitled “Optical Refractive Index Sensors Based on Plasmon-Induced Transparency phenomenon in a Plasmonic Waveguide Coupled to Stub and Nano-disk Resonators” is original, has not been fully or partly published before, and is not currently being considered for publication elsewhere. Also, results are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khani, S., Afsahi, M. Optical Refractive Index Sensors Based on Plasmon-Induced Transparency phenomenon in a Plasmonic Waveguide Coupled to Stub and Nano-disk Resonators. Plasmonics 18, 255–270 (2023). https://doi.org/10.1007/s11468-022-01772-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01772-y

Keywords

Navigation