Skip to main content
Log in

Study Effect of Magnetic Field on Au-TiO2 Core–Shell Nanoparticles via Laser Ablation Deposited on Porous Silicon for Photodetector

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Gold-titanium dioxide nanoparticles (Au-TiO2 NPs) were synthesized via pulsed Nd:YAG laser ablation in the CTAB under the influence of an external magnetic field produced. Scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–Vis spectroscopy, and transmission electron microscopy (TEM) have been utilized in order to analyze Au-TiO2 NPs. The XRD pattern related to Au-TiO2 NPs indicated that they have been polycrystalline and the specimens Au-TiO2 were nanocrystalline. In the case when applying a magnetic field, spherical NPs are generated, particle agglomeration is reduced, and particle size declines from 31 to 25 nm, according to SEM. Following ablation with a magnetic field, the optical energy gap of Au-TiO2 NPs increased from 3.5 to 3.7 eV. With current density–voltage (J-V) measurements, the electrical parameters of Al/Au-TiO2/PS/Si/Al heterojunction, including the barrier height (ΦB) and ideal factor (n), were indicated. The efficiency regarding Au-TiO2/PS photodetectors has been enhanced over various wavelengths, quantum efficiency (QE) of Au-TiO2/PS photodetectors has been reduced after adding a magnetic field during the process of ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Nayef UM, Kamel RI (2020) Bi2O3 nanoparticles ablated on porous silicon for sensing NO2 gas. Optik 208:164146

    Article  CAS  Google Scholar 

  2. Mutlak Falah A-H, Ahmed AF, Nayef UM, Al-zaidi Q, Abdulridha SK (2021) Improvement of absorption light of laser texturing on silicon surface for optoelectronic application. Optik 237:166755

  3. Jwied DH, Nayef UM, Mutlak FAH (2021) Synthesis of C: Se nanoparticles ablated on porous silicon for sensing NO2 and NH3 gases. Optik 241:167013

    Article  CAS  Google Scholar 

  4. Khudiar SS, Mutlak FA-H, Nayef UM (2021) Synthesis of ZnO nanostructures by hydrothermal method deposited on porous silicon for photo-conversion application. Optik 247:167903

  5. Ahmed AF, Yaseen WI, Abbas QA, Mutlak FA (2021) Plasma treatment effect on SnO2–GO nano-heterojunction: fabrication, characterization and optoelectronic applications. Appl Phys A 127:746

  6. Nayef UM, Muayad MW, Khalaf HA (2014) Eur Phys J Appl Phys 66:20104

    Article  Google Scholar 

  7. Abood HK, Mutlak FA-H (2020) Structural, morphological and optical properties of n-type porous silicon-effect of etching current density. IOP Conf Ser: Mater Sci Eng 757:012065

  8. Canham LT (1990) Appl Phys Lett 57(10):159–164

    Article  Google Scholar 

  9. Nayef UM, Hussein HT, Hussien AMA (2018) Optik - Int J Light Electron Optics 172:1134–1139

  10. Kamel RI, Ahmed DS, Nayef UM (2019) Synthesis of Bi2O3 nanoparticles by laser ablation on porous silicon for photoconversion application. Optik 193:163013

    Article  CAS  Google Scholar 

  11. Nayef UM, Hubeatir KA, Abdulkareem ZJ (2016) Characterisation of TiO2 nanoparticles on porous silicon for optoelectronics application. Mater Technol Adv Funct Mater Vol. 31 No. 14

  12. Abdulkhaleqa NA, Hasanb AK, Nayef UM (2020) Enhancement of photodetectors devices for silicon nanostructure from study effect of etching time by photoelectrochemical etching Technique. Optik 206:164325

    Article  Google Scholar 

  13. Falah A-H (2014) Mutlak, Photovoltaic enhancement of Si micro- and nanostructure solar cells via ultrafast laser texturing. Turk J Phys 38:130–135

    Article  Google Scholar 

  14. Mital G, Manoj T (2011) Phys Chem 56(16):1639–1657

    Google Scholar 

  15. Noothongkaew S, Han JK, Lee YB, Thumthan O, An K-S (2017) Au NPs decorated TiO2 nanotubes array candidate for UV photodetectors. Prog Nat Sci Mater Int 27:641–646

  16. Abdulkhaleq NA, Nayef UM, Albarazanchi AKH (2020) MgO nanoparticles synthesis via laser ablation stationed on porous silicon for photoconversion application. Optik 212:164793

    Article  CAS  Google Scholar 

  17. Jwied DH, Nayef UM, Mutlak FAH (2021) Preparation and characterization of C: Se nano-rods ablated on porous silicon. Optik 239:166811

    Article  CAS  Google Scholar 

  18. Lin J, Guo M, Yip CT (2013) High temperature crystallization of free-standing anatasenTiO2 nanotube membranes for high efficiency dye sensitized solar cells. Adv Funct Matter 23:5952–5960

    Article  CAS  Google Scholar 

  19. Anitha VC, Arghya BN, Joo SW, Ki B (2015) Min, Barrier oxide layer engineering of TiO2 nanotube arrays to get single and multistage Y-branched nanotubes: effect of voltage ramping and electrolyte conductivity. Mater Sci Eng B 195:1–11

    Article  CAS  Google Scholar 

  20. Yang M, Zhu JL, Liu W, Sun JL (2011) Novel photodetectors based on double-walled carbon nanotube Film/TiO2 nanotube array heterodimensional contacts. Nano Res 4:901–907

    Article  CAS  Google Scholar 

  21. Hong SM, Lee S, Jung HJ (2013) Bull Korean Chem Soc 34(1):279–282

    Article  CAS  Google Scholar 

  22. Barreca F, Acacia N, Barletta E, Spadaro D, Curro G, Neri F (2010) Appl urf Sci 256:6408–6412

    CAS  Google Scholar 

  23. Hussein HT, Nayef UM, Hussien AMA (2019) Synthesis of graphene on porous silicon for vapor organic sensor by using photoluminescence. Optik 180:61–70

  24. Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Che Rev 111:3858–3887

    Article  CAS  Google Scholar 

  25. Garcia M (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Appl Phys 44:283001–19

  26. Hammad QK, Ayyash AN, Mutlak FAH (2012) Improving SERS substrates with Au/Ag-coated Si nanostructures generated by laser ablation synthesis in PVA. J Opt

  27. Zhu J, Du HF, Zhang Q et al (2019) SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating. J Mater Chem C 7:3322–3334

    Article  CAS  Google Scholar 

  28. Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825

    Article  CAS  PubMed  Google Scholar 

  29. Abid HN, Nayef UM, Mutlak FA (2019) Preparation and characterization Co3O4 nanoparticles on porous silicon for humidity sensor by photoluminescence. Optik 178:379–383

  30. Nguyen NT, Altomare M, Yoo J, Schmuki P (2015) Efficient photocatalytic H-2 evolution: controlled dewetting-dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO2 nanotube arrays. Adv Mater 27:3208–3215

    Article  CAS  PubMed  Google Scholar 

  31. Liu GQ, Liu Y, Tang L, Liu XS, Fu GL, Liu ZQ (2019) Semiconductorenhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures. Nanophotonics 8:1095–1107

    Article  CAS  Google Scholar 

  32. Murawska M, Skrzypczak A, Kozak M (2012) Structure and morphology of gold nanoparticles in solution studied by TEM,SAXS and UV-Vis. ACTA Phys Polonica A

  33. Abed MA, Mutlak FA, Ahmed, AF, Nayef UM, Abdulridha SK, Jabir MS (2021) Synthesis of Ag/Au (core/shell) nanoparticles by laser ablation in liquid and study of their toxicity on blood human components. J Phys: Conf Ser 1795:012013

  34. Albornoz C, Jacobo SE (2006) J Magn Magn Mater 12:305

    Google Scholar 

  35. Wan J et al (2005) Cryst Growth 276:571

    Article  CAS  Google Scholar 

  36. Martinez-Mera I et al (2007) Mater Lett 61:4447

    Article  CAS  Google Scholar 

  37. Rashid TM, Nayef UM, Jabir MS, Mutlak FA-H (2021) Study of optical and morphological properties for Au-ZnO nanocomposite prepared by Laser ablation in liquid. J Phys: Conf Ser 1795(1):012041

    CAS  Google Scholar 

  38. Hahn A, Barcikowski S, Chichkov BN (2008) J Laser Micro/Nano Eng 3:2

    Google Scholar 

  39. Sasaki K, Takada N (2010) Pure Appl Chem 82:1317

    Article  CAS  Google Scholar 

  40. Nayef UM, Khudhair IM, Kayahan E (2017) Optik 144:546–552

    Article  CAS  Google Scholar 

  41. Jamal RK, Mutlak FA-H, Ibrahim FT, Nayef UM (2020) Optik 218:164971

  42. Nayef UM, Khudhair IM (2017) Optik 135:169–173

    Article  CAS  Google Scholar 

  43. Rashid TM, Nayef UM, Jabir MS, Mutlak FA (2021) Synthesis and characterization of Au:ZnO (core:shell) nanoparticles via laser ablation. Optik 244:167569

  44. Bisi O, Ossicini S, Pavesi L (2000) Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf Sci Rep 38:1–126

    Article  CAS  Google Scholar 

  45. Nayef UM, Kamel RI (2020) Enhancement the electrical properties of porous silicon for photodetectors applications by depositing Bi2O3 nanoparticles. Optik 207:163847

    Article  CAS  Google Scholar 

  46. Sailor MJ, Heinrich JL, Lauerhaas JM (1997) Stud Surf Sci Catal 103:209–235. Elsevier

  47. Azim AM, Ashrafabadi S, Kanjuri F (2012) Electrical behavior of nanostructured porous silicon. Acta Phys Pol A 122(1)

  48. Jwied DH, Nayef UM, Mutlak FAH (2021) Synthesis of C: Se (core:shell) nanoparticles via laser ablation on porous silicon for photodetector application. Optik 231:166493

    Article  CAS  Google Scholar 

  49. Nayef UM (2017) Optik 130:441–447

    Article  CAS  Google Scholar 

  50. Mutlak FA, Taha AB, Nayef UM (2018) Silicon 10:967–974

  51. Jwied D, Nayef U, Mutlak F (2021) Improvement of responsivity of C:Se nanoparticles ablated on porous silicon. Optik 241

  52. Sulaiman EM, Mutlak FAH, Nayef UM (2022) High-performance photodetector of Au–MgO/PS nanostructure manufactured via pulsed laser ablation technique. Opt Quant Electron 54:744

  53. Alber AS, Mutlak FAH (2022) A novel laser-assisted approach for synthesis of AuNPs/PS nanostructures as photodetector. J Opt

Download references

Acknowledgements

The authors would like to thank the University of Technology-Iraq for the logistic support of this work.

Author information

Authors and Affiliations

Authors

Contributions

Uday Nayef and Falah Mutlak conceived and supervised the study and designed the experiments. Ahmad Jwar carried out the XRD, SEM, and the absorption measurements. Uday Nayef fabricated the PS and hybrid Au-TiO2 NPs/PS layers acquired the electrical characterization and spectral responsivity. Uday Nayef drafted the initial version of the manuscript. All the authors commented on the results, provided ideas for the study, and reviewed the manuscript.

Corresponding author

Correspondence to Uday M. Nayef.

Ethics declarations

Conflict of Interest

The authors declare have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jwar, A.J., Nayef, U.M. & Mutlak, F.AH. Study Effect of Magnetic Field on Au-TiO2 Core–Shell Nanoparticles via Laser Ablation Deposited on Porous Silicon for Photodetector. Plasmonics 18, 595–605 (2023). https://doi.org/10.1007/s11468-023-01791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01791-3

Keywords

Navigation