Skip to main content
Log in

Structural, thermal and transport properties of \( {\text{B}}{{\text{i}}_4}{{\text{V}}_{2 - {\text{x}}}}{\text{G}}{{\text{a}}_{\text{x}}}{{\text{O}}_{11 - \delta }} \) (0 ≤ x ≤ 0.4)

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Solid electrolytes are mostly used in solid oxide fuel cells (SOFC). In the present study, gallium-substituted compounds (\( {\text{B}}{{\text{i}}_4}{{\text{V}}_{2 - {\text{x}}}}{\text{M}}{{\text{e}}_{\text{x}}}{{\text{O}}_{11 - \delta }} \); Me = Ga3+; 0≤x≤0.4) were prepared by solid-state reaction technique for its use as an electrolyte in SOFC. Structural and conductivity behavior was studied as a function of the Ga3+ substitution on vanadium site. The compounds remain in the orthorhombic α-phase for x = 0 and 0.1 whereas higher concentration of dopant leads to β-phase stabilization. The highest and lowest ionic conductivity were observed in x = 0.2 and x = 0.4 samples, respectively. The prepared samples were studied by using alternating current conductivity, differential thermal analysis and X-ray diffraction techniques. The results are discussed on the basis of formation of oxygen vacancy and its ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abraham F, Boivin JC, Mairesse G, Nowogrocki G (1990) The BIMEVOX series: a new family of high performances oxide ion conductors. Solid State Ion 40–41(part 2):934–937

    Article  Google Scholar 

  2. Abraham F, Debreuille-Gresse MF, Mairesse G, Nowogrocki G (1988) Phase transitions and ionic conductivity in Bi4V2O11 an oxide with a layered structure. Solid State Ion 28–30:529–532

    Article  Google Scholar 

  3. Mairesse G, Roussel P, Vannier RN, Anne M, Pirovano C, Nowogrocki G (2003) Crystal structure determination of α-, β-, and γ-Bi4V2O11 polymorphs. Part II: crystal structure of α-Bi4V2O11. Solid State Sci 5:861–869

    Article  CAS  Google Scholar 

  4. Mairesse G, Roussel P, Vannier RN, Anne M, Pirovano C, Nowogrocki G (2003) Crystal structure determination of α, β and γ-Bi4V2O11 polymorphs. Part I: γ and β-Bi4V2O11. Solid State Sci 5:851–859

    Article  CAS  Google Scholar 

  5. Abraham I, Krok F (2003) A model for the mechanism of low temperature ionic conduction in divalent-substituted γ-BIMEVOXes. Solid State Ion 157:139–145

    Article  Google Scholar 

  6. Vannier RN, Mairesse G, Abraham F, Nowogrocki G, Pernot E, Anne M, Bacmann M, Strobel P, Fouletier J (1995) Thermal behaviour of Bi4V2O11: X-ray diffraction and impedance spectroscopy studies. Solid State Ion 78:183–189

    Article  CAS  Google Scholar 

  7. Krok F, Abraham I, Bangobango DG, Bogusz W, Nelstrop JAG (1996) Electrical and structural study of BICOVOX. Solid State Ion 86–88:261–266

    Article  Google Scholar 

  8. Goodenough JB, Manthiram A, Paranthaman M, Zhen YS (1992) Oxide ion electrolytes. Mater Sci Eng B12:357–364

    Article  CAS  Google Scholar 

  9. Yan J, Greenblatt M (1995) Ionic conductivities of Bi4V2−xMxO11−x/2 (M = Ti, Zr, Sn, Pb) solid solutions. Solid State Ion 81(3–4):225–233

    Article  CAS  Google Scholar 

  10. Kant R, Singh K, Pandey OP (2009) Ionic conductivity and structural properties of MnO doped Bi4V2O11 system. Int J Ion 15(5):567

    Google Scholar 

  11. Joubert O, Jouanneaux A, Ganne M (1994) Crystal structure of low-temperature form of bismuth vanadium oxide determined by rietveld refinement of X-ray and neutron diffraction data (α-Bi4V2O11). Mater Res Bull 29:175–184

    Article  CAS  Google Scholar 

  12. Huve M, Vannier R, Nowogrocki G, Mairesse G, Tendello GV (1996) From Bi4V2O11 to Bi4V2O10.66: the VV–VIV transformation in the Aurivillius-type framework. J Mater Chem 6:1339–1345

    Article  CAS  Google Scholar 

  13. Vannier RN, Mairesse G, Abraham F, Nowogrocki G (1995) W-substituted Bi4V2O11. Solid State Ion 80:11–17

    Article  CAS  Google Scholar 

  14. Vannier RN, Mairesse G, Abraham F, Nowogrocki G (1993) Incommensurate superlattice in Mo-substituted Bi4V2O11. J Solid State Chem 103:441–446

    Article  CAS  Google Scholar 

  15. Krok F, Abraham I, Malys M, Bogusz W, Dygas JR, Nelstrop JAG, Bush AJ (2000) Structural and electrical consequences of high dopant levels in the BIMGVOX system. Solid State Ion 136–137:119–125

    Article  Google Scholar 

  16. Abraham I, Krok F, Malys M, Wrobel W (2005) Phase transition studies in BIMEVOX solid electrolytes using AC impedance spectroscopy. Solid State Ion 176:2053–2058

    Article  Google Scholar 

  17. Lee CK, Bay BH, West AR (1996) New oxide ion conducting solid electrolytes, Bi4V2O11:M;M = B, Al, Cr, Y. La J Mater Chem 6(3):331–335

    Article  CAS  Google Scholar 

  18. Lee CK, Tan MP, West AR (1994) Ge-doped bismuth vanadatesolid electrolytes: synthesis, phase diagram and electrical properties. J Mater Chem 4(4):525–528

    Article  CAS  Google Scholar 

  19. Lee CK, Sinclair DC, West AR (1993) Stoichiometry and stability of bismuth vanadate, Bi4V2O11, solid solutions. Solid State Ion 62:193–198

    Article  CAS  Google Scholar 

  20. Yi L, Lao LE (2006) Structural and electrical properties of ZnO-doped 8 mol% yttria-stabilized zirconia. Solid State Ion 177:159–163

    Article  Google Scholar 

  21. Wrobel W, Abrahams I, Krok F, Kozanecka A, Malys M, Bogusz W, Dygas JR (2004) Phase stabilization and electrical characterization in the pseudo-binary system \( {\text{B}}{{\text{i}}_2}{\text{Zr}}{{\text{O}}_5} - {\text{B}}{{\text{i}}_2}{\text{V}}{{\text{O}}_{5.5 - \delta }} \). Solid State Ion 175:425–429

    Article  CAS  Google Scholar 

  22. Kant R, Singh K, Pandey OP (2008) Synthesis and characterization of bismuth vanadate electrolyte material with aluminium doping for sofc application. Int J Hydrogen Energy 33:455–462

    Article  CAS  Google Scholar 

  23. Kant R, Singh K, Pandey OP (2009) Microstructural and Electrical behavior of \( {\text{B}}{{\text{i}}_4}{{\text{V}}_{2 - {\text{x}}}}{\text{C}}{{\text{u}}_{\text{x}}}{{\text{O}}_{11 - }}_\delta \) (0 ≤ x ≤ 0.4). Ceram Int 35:221–227

    Article  CAS  Google Scholar 

Download references

Acknowledgment

All India Council of Technical Education, New Delhi (India) is highly acknowledged for providing financial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kulvir Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kant, R., Singh, K. & Pandey, O.P. Structural, thermal and transport properties of \( {\text{B}}{{\text{i}}_4}{{\text{V}}_{2 - {\text{x}}}}{\text{G}}{{\text{a}}_{\text{x}}}{{\text{O}}_{11 - \delta }} \) (0 ≤ x ≤ 0.4). Ionics 16, 277–282 (2010). https://doi.org/10.1007/s11581-009-0392-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-009-0392-7

Keywords

Navigation